![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unirnffid | Structured version Visualization version GIF version |
Description: The union of the range of a function from a finite set into the class of finite sets is finite. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
unirnffid.1 | β’ (π β πΉ:πβΆFin) |
unirnffid.2 | β’ (π β π β Fin) |
Ref | Expression |
---|---|
unirnffid | β’ (π β βͺ ran πΉ β Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unirnffid.1 | . . . . 5 β’ (π β πΉ:πβΆFin) | |
2 | 1 | ffnd 6715 | . . . 4 β’ (π β πΉ Fn π) |
3 | unirnffid.2 | . . . 4 β’ (π β π β Fin) | |
4 | fnfi 9177 | . . . 4 β’ ((πΉ Fn π β§ π β Fin) β πΉ β Fin) | |
5 | 2, 3, 4 | syl2anc 584 | . . 3 β’ (π β πΉ β Fin) |
6 | rnfi 9331 | . . 3 β’ (πΉ β Fin β ran πΉ β Fin) | |
7 | 5, 6 | syl 17 | . 2 β’ (π β ran πΉ β Fin) |
8 | 1 | frnd 6722 | . 2 β’ (π β ran πΉ β Fin) |
9 | unifi 9337 | . 2 β’ ((ran πΉ β Fin β§ ran πΉ β Fin) β βͺ ran πΉ β Fin) | |
10 | 7, 8, 9 | syl2anc 584 | 1 β’ (π β βͺ ran πΉ β Fin) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2106 β wss 3947 βͺ cuni 4907 ran crn 5676 Fn wfn 6535 βΆwf 6536 Fincfn 8935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-om 7852 df-1st 7971 df-2nd 7972 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-fin 8939 |
This theorem is referenced by: marypha2 9430 acsinfd 18505 |
Copyright terms: Public domain | W3C validator |