MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unirnffid Structured version   Visualization version   GIF version

Theorem unirnffid 9305
Description: The union of the range of a function from a finite set into the class of finite sets is finite. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
unirnffid.1 (𝜑𝐹:𝑇⟶Fin)
unirnffid.2 (𝜑𝑇 ∈ Fin)
Assertion
Ref Expression
unirnffid (𝜑 ran 𝐹 ∈ Fin)

Proof of Theorem unirnffid
StepHypRef Expression
1 unirnffid.1 . . . . 5 (𝜑𝐹:𝑇⟶Fin)
21ffnd 6692 . . . 4 (𝜑𝐹 Fn 𝑇)
3 unirnffid.2 . . . 4 (𝜑𝑇 ∈ Fin)
4 fnfi 9148 . . . 4 ((𝐹 Fn 𝑇𝑇 ∈ Fin) → 𝐹 ∈ Fin)
52, 3, 4syl2anc 584 . . 3 (𝜑𝐹 ∈ Fin)
6 rnfi 9298 . . 3 (𝐹 ∈ Fin → ran 𝐹 ∈ Fin)
75, 6syl 17 . 2 (𝜑 → ran 𝐹 ∈ Fin)
81frnd 6699 . 2 (𝜑 → ran 𝐹 ⊆ Fin)
9 unifi 9302 . 2 ((ran 𝐹 ∈ Fin ∧ ran 𝐹 ⊆ Fin) → ran 𝐹 ∈ Fin)
107, 8, 9syl2anc 584 1 (𝜑 ran 𝐹 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wss 3917   cuni 4874  ran crn 5642   Fn wfn 6509  wf 6510  Fincfn 8921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-om 7846  df-1st 7971  df-2nd 7972  df-1o 8437  df-en 8922  df-dom 8923  df-fin 8925
This theorem is referenced by:  marypha2  9397  acsinfd  18522
  Copyright terms: Public domain W3C validator