| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unirnffid | Structured version Visualization version GIF version | ||
| Description: The union of the range of a function from a finite set into the class of finite sets is finite. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| unirnffid.1 | ⊢ (𝜑 → 𝐹:𝑇⟶Fin) |
| unirnffid.2 | ⊢ (𝜑 → 𝑇 ∈ Fin) |
| Ref | Expression |
|---|---|
| unirnffid | ⊢ (𝜑 → ∪ ran 𝐹 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unirnffid.1 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑇⟶Fin) | |
| 2 | 1 | ffnd 6658 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝑇) |
| 3 | unirnffid.2 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ Fin) | |
| 4 | fnfi 9093 | . . . 4 ⊢ ((𝐹 Fn 𝑇 ∧ 𝑇 ∈ Fin) → 𝐹 ∈ Fin) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝐹 ∈ Fin) |
| 6 | rnfi 9230 | . . 3 ⊢ (𝐹 ∈ Fin → ran 𝐹 ∈ Fin) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (𝜑 → ran 𝐹 ∈ Fin) |
| 8 | 1 | frnd 6665 | . 2 ⊢ (𝜑 → ran 𝐹 ⊆ Fin) |
| 9 | unifi 9234 | . 2 ⊢ ((ran 𝐹 ∈ Fin ∧ ran 𝐹 ⊆ Fin) → ∪ ran 𝐹 ∈ Fin) | |
| 10 | 7, 8, 9 | syl2anc 584 | 1 ⊢ (𝜑 → ∪ ran 𝐹 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ⊆ wss 3897 ∪ cuni 4858 ran crn 5620 Fn wfn 6482 ⟶wf 6483 Fincfn 8875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-om 7803 df-1st 7927 df-2nd 7928 df-1o 8391 df-en 8876 df-dom 8877 df-fin 8879 |
| This theorem is referenced by: marypha2 9329 acsinfd 18468 |
| Copyright terms: Public domain | W3C validator |