MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unirnffid Structured version   Visualization version   GIF version

Theorem unirnffid 9237
Description: The union of the range of a function from a finite set into the class of finite sets is finite. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
unirnffid.1 (𝜑𝐹:𝑇⟶Fin)
unirnffid.2 (𝜑𝑇 ∈ Fin)
Assertion
Ref Expression
unirnffid (𝜑 ran 𝐹 ∈ Fin)

Proof of Theorem unirnffid
StepHypRef Expression
1 unirnffid.1 . . . . 5 (𝜑𝐹:𝑇⟶Fin)
21ffnd 6658 . . . 4 (𝜑𝐹 Fn 𝑇)
3 unirnffid.2 . . . 4 (𝜑𝑇 ∈ Fin)
4 fnfi 9093 . . . 4 ((𝐹 Fn 𝑇𝑇 ∈ Fin) → 𝐹 ∈ Fin)
52, 3, 4syl2anc 584 . . 3 (𝜑𝐹 ∈ Fin)
6 rnfi 9230 . . 3 (𝐹 ∈ Fin → ran 𝐹 ∈ Fin)
75, 6syl 17 . 2 (𝜑 → ran 𝐹 ∈ Fin)
81frnd 6665 . 2 (𝜑 → ran 𝐹 ⊆ Fin)
9 unifi 9234 . 2 ((ran 𝐹 ∈ Fin ∧ ran 𝐹 ⊆ Fin) → ran 𝐹 ∈ Fin)
107, 8, 9syl2anc 584 1 (𝜑 ran 𝐹 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  wss 3897   cuni 4858  ran crn 5620   Fn wfn 6482  wf 6483  Fincfn 8875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-om 7803  df-1st 7927  df-2nd 7928  df-1o 8391  df-en 8876  df-dom 8877  df-fin 8879
This theorem is referenced by:  marypha2  9329  acsinfd  18468
  Copyright terms: Public domain W3C validator