MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uztric Structured version   Visualization version   GIF version

Theorem uztric 12254
Description: Totality of the ordering relation on integers, stated in terms of upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 25-Jun-2013.)
Assertion
Ref Expression
uztric ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ∨ 𝑀 ∈ (ℤ𝑁)))

Proof of Theorem uztric
StepHypRef Expression
1 zre 11973 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2 zre 11973 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3 letric 10729 . . 3 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀𝑁𝑁𝑀))
41, 2, 3syl2an 598 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑁𝑀))
5 eluz 12245 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))
6 eluz 12245 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 ∈ (ℤ𝑁) ↔ 𝑁𝑀))
76ancoms 462 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ (ℤ𝑁) ↔ 𝑁𝑀))
85, 7orbi12d 916 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 ∈ (ℤ𝑀) ∨ 𝑀 ∈ (ℤ𝑁)) ↔ (𝑀𝑁𝑁𝑀)))
94, 8mpbird 260 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ∨ 𝑀 ∈ (ℤ𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844  wcel 2111   class class class wbr 5030  cfv 6324  cr 10525  cle 10665  cz 11969  cuz 12231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-pre-lttri 10600
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-neg 10862  df-z 11970  df-uz 12232
This theorem is referenced by:  uzin  12266  caubnd  14710  isercoll  15016  sumrb  15062  prodrb  15278  smupvallem  15822  prmreclem5  16246  efgredlemb  18864  1stckgenlem  22158  caucfil  23887  bcmax  25862
  Copyright terms: Public domain W3C validator