MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uztric Structured version   Visualization version   GIF version

Theorem uztric 12853
Description: Totality of the ordering relation on integers, stated in terms of upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 25-Jun-2013.)
Assertion
Ref Expression
uztric ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ∨ 𝑀 ∈ (ℤ𝑁)))

Proof of Theorem uztric
StepHypRef Expression
1 zre 12569 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2 zre 12569 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3 letric 11321 . . 3 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀𝑁𝑁𝑀))
41, 2, 3syl2an 595 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑁𝑀))
5 eluz 12843 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))
6 eluz 12843 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 ∈ (ℤ𝑁) ↔ 𝑁𝑀))
76ancoms 458 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ (ℤ𝑁) ↔ 𝑁𝑀))
85, 7orbi12d 916 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 ∈ (ℤ𝑀) ∨ 𝑀 ∈ (ℤ𝑁)) ↔ (𝑀𝑁𝑁𝑀)))
94, 8mpbird 257 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ∨ 𝑀 ∈ (ℤ𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 844  wcel 2105   class class class wbr 5148  cfv 6543  cr 11115  cle 11256  cz 12565  cuz 12829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-pre-lttri 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-neg 11454  df-z 12566  df-uz 12830
This theorem is referenced by:  uzin  12869  caubnd  15312  isercoll  15621  sumrb  15666  prodrb  15883  smupvallem  16431  prmreclem5  16860  efgredlemb  19662  1stckgenlem  23377  caucfil  25131  bcmax  27125
  Copyright terms: Public domain W3C validator