MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smupvallem Structured version   Visualization version   GIF version

Theorem smupvallem 16190
Description: If 𝐴 only has elements less than 𝑁, then all elements of the partial sum sequence past 𝑁 already equal the final value. (Contributed by Mario Carneiro, 20-Sep-2016.)
Hypotheses
Ref Expression
smuval.a (𝜑𝐴 ⊆ ℕ0)
smuval.b (𝜑𝐵 ⊆ ℕ0)
smuval.p 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
smuval.n (𝜑𝑁 ∈ ℕ0)
smupvallem.a (𝜑𝐴 ⊆ (0..^𝑁))
smupvallem.m (𝜑𝑀 ∈ (ℤ𝑁))
Assertion
Ref Expression
smupvallem (𝜑 → (𝑃𝑀) = (𝐴 smul 𝐵))
Distinct variable groups:   𝑚,𝑛,𝑝,𝐴   𝑛,𝑁   𝜑,𝑛   𝐵,𝑚,𝑛,𝑝
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑚,𝑛,𝑝)   𝑀(𝑚,𝑛,𝑝)   𝑁(𝑚,𝑝)

Proof of Theorem smupvallem
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smuval.a . . . . . . 7 (𝜑𝐴 ⊆ ℕ0)
2 smuval.b . . . . . . 7 (𝜑𝐵 ⊆ ℕ0)
3 smuval.p . . . . . . 7 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
41, 2, 3smupf 16185 . . . . . 6 (𝜑𝑃:ℕ0⟶𝒫 ℕ0)
5 smuval.n . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
6 smupvallem.m . . . . . . 7 (𝜑𝑀 ∈ (ℤ𝑁))
7 eluznn0 12657 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ ℕ0)
85, 6, 7syl2anc 584 . . . . . 6 (𝜑𝑀 ∈ ℕ0)
94, 8ffvelrnd 6962 . . . . 5 (𝜑 → (𝑃𝑀) ∈ 𝒫 ℕ0)
109elpwid 4544 . . . 4 (𝜑 → (𝑃𝑀) ⊆ ℕ0)
1110sseld 3920 . . 3 (𝜑 → (𝑘 ∈ (𝑃𝑀) → 𝑘 ∈ ℕ0))
121, 2, 3smufval 16184 . . . . 5 (𝜑 → (𝐴 smul 𝐵) = {𝑘 ∈ ℕ0𝑘 ∈ (𝑃‘(𝑘 + 1))})
13 ssrab2 4013 . . . . 5 {𝑘 ∈ ℕ0𝑘 ∈ (𝑃‘(𝑘 + 1))} ⊆ ℕ0
1412, 13eqsstrdi 3975 . . . 4 (𝜑 → (𝐴 smul 𝐵) ⊆ ℕ0)
1514sseld 3920 . . 3 (𝜑 → (𝑘 ∈ (𝐴 smul 𝐵) → 𝑘 ∈ ℕ0))
161ad2antrr 723 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑁 ∈ (ℤ‘(𝑘 + 1))) → 𝐴 ⊆ ℕ0)
172ad2antrr 723 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑁 ∈ (ℤ‘(𝑘 + 1))) → 𝐵 ⊆ ℕ0)
18 simplr 766 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑁 ∈ (ℤ‘(𝑘 + 1))) → 𝑘 ∈ ℕ0)
196adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝑀 ∈ (ℤ𝑁))
20 uztrn 12600 . . . . . . . 8 ((𝑀 ∈ (ℤ𝑁) ∧ 𝑁 ∈ (ℤ‘(𝑘 + 1))) → 𝑀 ∈ (ℤ‘(𝑘 + 1)))
2119, 20sylan 580 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑁 ∈ (ℤ‘(𝑘 + 1))) → 𝑀 ∈ (ℤ‘(𝑘 + 1)))
2216, 17, 3, 18, 21smuval2 16189 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑁 ∈ (ℤ‘(𝑘 + 1))) → (𝑘 ∈ (𝐴 smul 𝐵) ↔ 𝑘 ∈ (𝑃𝑀)))
2322bicomd 222 . . . . 5 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑁 ∈ (ℤ‘(𝑘 + 1))) → (𝑘 ∈ (𝑃𝑀) ↔ 𝑘 ∈ (𝐴 smul 𝐵)))
246ad2antrr 723 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → 𝑀 ∈ (ℤ𝑁))
25 simpll 764 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → 𝜑)
26 fveqeq2 6783 . . . . . . . . . . 11 (𝑥 = 𝑁 → ((𝑃𝑥) = (𝑃𝑁) ↔ (𝑃𝑁) = (𝑃𝑁)))
2726imbi2d 341 . . . . . . . . . 10 (𝑥 = 𝑁 → ((𝜑 → (𝑃𝑥) = (𝑃𝑁)) ↔ (𝜑 → (𝑃𝑁) = (𝑃𝑁))))
28 fveqeq2 6783 . . . . . . . . . . 11 (𝑥 = 𝑘 → ((𝑃𝑥) = (𝑃𝑁) ↔ (𝑃𝑘) = (𝑃𝑁)))
2928imbi2d 341 . . . . . . . . . 10 (𝑥 = 𝑘 → ((𝜑 → (𝑃𝑥) = (𝑃𝑁)) ↔ (𝜑 → (𝑃𝑘) = (𝑃𝑁))))
30 fveqeq2 6783 . . . . . . . . . . 11 (𝑥 = (𝑘 + 1) → ((𝑃𝑥) = (𝑃𝑁) ↔ (𝑃‘(𝑘 + 1)) = (𝑃𝑁)))
3130imbi2d 341 . . . . . . . . . 10 (𝑥 = (𝑘 + 1) → ((𝜑 → (𝑃𝑥) = (𝑃𝑁)) ↔ (𝜑 → (𝑃‘(𝑘 + 1)) = (𝑃𝑁))))
32 fveqeq2 6783 . . . . . . . . . . 11 (𝑥 = 𝑀 → ((𝑃𝑥) = (𝑃𝑁) ↔ (𝑃𝑀) = (𝑃𝑁)))
3332imbi2d 341 . . . . . . . . . 10 (𝑥 = 𝑀 → ((𝜑 → (𝑃𝑥) = (𝑃𝑁)) ↔ (𝜑 → (𝑃𝑀) = (𝑃𝑁))))
34 eqidd 2739 . . . . . . . . . 10 (𝜑 → (𝑃𝑁) = (𝑃𝑁))
351adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝐴 ⊆ ℕ0)
362adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝐵 ⊆ ℕ0)
37 eluznn0 12657 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0𝑘 ∈ (ℤ𝑁)) → 𝑘 ∈ ℕ0)
385, 37sylan 580 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘 ∈ ℕ0)
3935, 36, 3, 38smupp1 16187 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝑃‘(𝑘 + 1)) = ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}))
405nn0red 12294 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑁 ∈ ℝ)
4140adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑁 ∈ ℝ)
4238nn0red 12294 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘 ∈ ℝ)
43 eluzle 12595 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (ℤ𝑁) → 𝑁𝑘)
4443adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑁𝑘)
4541, 42, 44lensymd 11126 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (ℤ𝑁)) → ¬ 𝑘 < 𝑁)
46 smupvallem.a . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐴 ⊆ (0..^𝑁))
4746adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝐴 ⊆ (0..^𝑁))
4847sseld 3920 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝑘𝐴𝑘 ∈ (0..^𝑁)))
49 elfzolt2 13396 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (0..^𝑁) → 𝑘 < 𝑁)
5048, 49syl6 35 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝑘𝐴𝑘 < 𝑁))
5150adantrd 492 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵) → 𝑘 < 𝑁))
5245, 51mtod 197 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (ℤ𝑁)) → ¬ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵))
5352ralrimivw 3104 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (ℤ𝑁)) → ∀𝑛 ∈ ℕ0 ¬ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵))
54 rabeq0 4318 . . . . . . . . . . . . . . . . 17 ({𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} = ∅ ↔ ∀𝑛 ∈ ℕ0 ¬ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵))
5553, 54sylibr 233 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ𝑁)) → {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} = ∅)
5655oveq2d 7291 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) = ((𝑃𝑘) sadd ∅))
574adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑃:ℕ0⟶𝒫 ℕ0)
5857, 38ffvelrnd 6962 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝑃𝑘) ∈ 𝒫 ℕ0)
5958elpwid 4544 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝑃𝑘) ⊆ ℕ0)
60 sadid1 16175 . . . . . . . . . . . . . . . 16 ((𝑃𝑘) ⊆ ℕ0 → ((𝑃𝑘) sadd ∅) = (𝑃𝑘))
6159, 60syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑃𝑘) sadd ∅) = (𝑃𝑘))
6239, 56, 613eqtrd 2782 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝑃‘(𝑘 + 1)) = (𝑃𝑘))
6362eqeq1d 2740 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑃‘(𝑘 + 1)) = (𝑃𝑁) ↔ (𝑃𝑘) = (𝑃𝑁)))
6463biimprd 247 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑃𝑘) = (𝑃𝑁) → (𝑃‘(𝑘 + 1)) = (𝑃𝑁)))
6564expcom 414 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑁) → (𝜑 → ((𝑃𝑘) = (𝑃𝑁) → (𝑃‘(𝑘 + 1)) = (𝑃𝑁))))
6665a2d 29 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑁) → ((𝜑 → (𝑃𝑘) = (𝑃𝑁)) → (𝜑 → (𝑃‘(𝑘 + 1)) = (𝑃𝑁))))
6727, 29, 31, 33, 34, 66uzind4i 12650 . . . . . . . . 9 (𝑀 ∈ (ℤ𝑁) → (𝜑 → (𝑃𝑀) = (𝑃𝑁)))
6824, 25, 67sylc 65 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → (𝑃𝑀) = (𝑃𝑁))
69 simpr 485 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → (𝑘 + 1) ∈ (ℤ𝑁))
7027, 29, 31, 31, 34, 66uzind4i 12650 . . . . . . . . 9 ((𝑘 + 1) ∈ (ℤ𝑁) → (𝜑 → (𝑃‘(𝑘 + 1)) = (𝑃𝑁)))
7169, 25, 70sylc 65 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → (𝑃‘(𝑘 + 1)) = (𝑃𝑁))
7268, 71eqtr4d 2781 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → (𝑃𝑀) = (𝑃‘(𝑘 + 1)))
7372eleq2d 2824 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → (𝑘 ∈ (𝑃𝑀) ↔ 𝑘 ∈ (𝑃‘(𝑘 + 1))))
741ad2antrr 723 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → 𝐴 ⊆ ℕ0)
752ad2antrr 723 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → 𝐵 ⊆ ℕ0)
76 simplr 766 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → 𝑘 ∈ ℕ0)
7774, 75, 3, 76smuval 16188 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → (𝑘 ∈ (𝐴 smul 𝐵) ↔ 𝑘 ∈ (𝑃‘(𝑘 + 1))))
7873, 77bitr4d 281 . . . . 5 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → (𝑘 ∈ (𝑃𝑀) ↔ 𝑘 ∈ (𝐴 smul 𝐵)))
79 simpr 485 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
8079nn0zd 12424 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ)
8180peano2zd 12429 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℤ)
825nn0zd 12424 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
8382adantr 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → 𝑁 ∈ ℤ)
84 uztric 12606 . . . . . 6 (((𝑘 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ‘(𝑘 + 1)) ∨ (𝑘 + 1) ∈ (ℤ𝑁)))
8581, 83, 84syl2anc 584 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝑁 ∈ (ℤ‘(𝑘 + 1)) ∨ (𝑘 + 1) ∈ (ℤ𝑁)))
8623, 78, 85mpjaodan 956 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝑘 ∈ (𝑃𝑀) ↔ 𝑘 ∈ (𝐴 smul 𝐵)))
8786ex 413 . . 3 (𝜑 → (𝑘 ∈ ℕ0 → (𝑘 ∈ (𝑃𝑀) ↔ 𝑘 ∈ (𝐴 smul 𝐵))))
8811, 15, 87pm5.21ndd 381 . 2 (𝜑 → (𝑘 ∈ (𝑃𝑀) ↔ 𝑘 ∈ (𝐴 smul 𝐵)))
8988eqrdv 2736 1 (𝜑 → (𝑃𝑀) = (𝐴 smul 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wral 3064  {crab 3068  wss 3887  c0 4256  ifcif 4459  𝒫 cpw 4533   class class class wbr 5074  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cle 11010  cmin 11205  0cn0 12233  cz 12319  cuz 12582  ..^cfzo 13382  seqcseq 13721   sadd csad 16127   smul csmu 16128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-xor 1507  df-tru 1542  df-fal 1552  df-had 1595  df-cad 1609  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-dvds 15964  df-bits 16129  df-sad 16158  df-smu 16183
This theorem is referenced by:  smupval  16195
  Copyright terms: Public domain W3C validator