MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smupvallem Structured version   Visualization version   GIF version

Theorem smupvallem 15665
Description: If 𝐴 only has elements less than 𝑁, then all elements of the partial sum sequence past 𝑁 already equal the final value. (Contributed by Mario Carneiro, 20-Sep-2016.)
Hypotheses
Ref Expression
smuval.a (𝜑𝐴 ⊆ ℕ0)
smuval.b (𝜑𝐵 ⊆ ℕ0)
smuval.p 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
smuval.n (𝜑𝑁 ∈ ℕ0)
smupvallem.a (𝜑𝐴 ⊆ (0..^𝑁))
smupvallem.m (𝜑𝑀 ∈ (ℤ𝑁))
Assertion
Ref Expression
smupvallem (𝜑 → (𝑃𝑀) = (𝐴 smul 𝐵))
Distinct variable groups:   𝑚,𝑛,𝑝,𝐴   𝑛,𝑁   𝜑,𝑛   𝐵,𝑚,𝑛,𝑝
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑚,𝑛,𝑝)   𝑀(𝑚,𝑛,𝑝)   𝑁(𝑚,𝑝)

Proof of Theorem smupvallem
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smuval.a . . . . . . 7 (𝜑𝐴 ⊆ ℕ0)
2 smuval.b . . . . . . 7 (𝜑𝐵 ⊆ ℕ0)
3 smuval.p . . . . . . 7 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
41, 2, 3smupf 15660 . . . . . 6 (𝜑𝑃:ℕ0⟶𝒫 ℕ0)
5 smuval.n . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
6 smupvallem.m . . . . . . 7 (𝜑𝑀 ∈ (ℤ𝑁))
7 eluznn0 12166 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ ℕ0)
85, 6, 7syl2anc 584 . . . . . 6 (𝜑𝑀 ∈ ℕ0)
94, 8ffvelrnd 6717 . . . . 5 (𝜑 → (𝑃𝑀) ∈ 𝒫 ℕ0)
109elpwid 4465 . . . 4 (𝜑 → (𝑃𝑀) ⊆ ℕ0)
1110sseld 3888 . . 3 (𝜑 → (𝑘 ∈ (𝑃𝑀) → 𝑘 ∈ ℕ0))
121, 2, 3smufval 15659 . . . . 5 (𝜑 → (𝐴 smul 𝐵) = {𝑘 ∈ ℕ0𝑘 ∈ (𝑃‘(𝑘 + 1))})
13 ssrab2 3977 . . . . 5 {𝑘 ∈ ℕ0𝑘 ∈ (𝑃‘(𝑘 + 1))} ⊆ ℕ0
1412, 13syl6eqss 3942 . . . 4 (𝜑 → (𝐴 smul 𝐵) ⊆ ℕ0)
1514sseld 3888 . . 3 (𝜑 → (𝑘 ∈ (𝐴 smul 𝐵) → 𝑘 ∈ ℕ0))
161ad2antrr 722 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑁 ∈ (ℤ‘(𝑘 + 1))) → 𝐴 ⊆ ℕ0)
172ad2antrr 722 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑁 ∈ (ℤ‘(𝑘 + 1))) → 𝐵 ⊆ ℕ0)
18 simplr 765 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑁 ∈ (ℤ‘(𝑘 + 1))) → 𝑘 ∈ ℕ0)
196adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝑀 ∈ (ℤ𝑁))
20 uztrn 12110 . . . . . . . 8 ((𝑀 ∈ (ℤ𝑁) ∧ 𝑁 ∈ (ℤ‘(𝑘 + 1))) → 𝑀 ∈ (ℤ‘(𝑘 + 1)))
2119, 20sylan 580 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑁 ∈ (ℤ‘(𝑘 + 1))) → 𝑀 ∈ (ℤ‘(𝑘 + 1)))
2216, 17, 3, 18, 21smuval2 15664 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑁 ∈ (ℤ‘(𝑘 + 1))) → (𝑘 ∈ (𝐴 smul 𝐵) ↔ 𝑘 ∈ (𝑃𝑀)))
2322bicomd 224 . . . . 5 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑁 ∈ (ℤ‘(𝑘 + 1))) → (𝑘 ∈ (𝑃𝑀) ↔ 𝑘 ∈ (𝐴 smul 𝐵)))
246ad2antrr 722 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → 𝑀 ∈ (ℤ𝑁))
25 simpll 763 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → 𝜑)
26 fveqeq2 6547 . . . . . . . . . . 11 (𝑥 = 𝑁 → ((𝑃𝑥) = (𝑃𝑁) ↔ (𝑃𝑁) = (𝑃𝑁)))
2726imbi2d 342 . . . . . . . . . 10 (𝑥 = 𝑁 → ((𝜑 → (𝑃𝑥) = (𝑃𝑁)) ↔ (𝜑 → (𝑃𝑁) = (𝑃𝑁))))
28 fveqeq2 6547 . . . . . . . . . . 11 (𝑥 = 𝑘 → ((𝑃𝑥) = (𝑃𝑁) ↔ (𝑃𝑘) = (𝑃𝑁)))
2928imbi2d 342 . . . . . . . . . 10 (𝑥 = 𝑘 → ((𝜑 → (𝑃𝑥) = (𝑃𝑁)) ↔ (𝜑 → (𝑃𝑘) = (𝑃𝑁))))
30 fveqeq2 6547 . . . . . . . . . . 11 (𝑥 = (𝑘 + 1) → ((𝑃𝑥) = (𝑃𝑁) ↔ (𝑃‘(𝑘 + 1)) = (𝑃𝑁)))
3130imbi2d 342 . . . . . . . . . 10 (𝑥 = (𝑘 + 1) → ((𝜑 → (𝑃𝑥) = (𝑃𝑁)) ↔ (𝜑 → (𝑃‘(𝑘 + 1)) = (𝑃𝑁))))
32 fveqeq2 6547 . . . . . . . . . . 11 (𝑥 = 𝑀 → ((𝑃𝑥) = (𝑃𝑁) ↔ (𝑃𝑀) = (𝑃𝑁)))
3332imbi2d 342 . . . . . . . . . 10 (𝑥 = 𝑀 → ((𝜑 → (𝑃𝑥) = (𝑃𝑁)) ↔ (𝜑 → (𝑃𝑀) = (𝑃𝑁))))
34 eqidd 2796 . . . . . . . . . 10 (𝜑 → (𝑃𝑁) = (𝑃𝑁))
351adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝐴 ⊆ ℕ0)
362adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝐵 ⊆ ℕ0)
37 eluznn0 12166 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0𝑘 ∈ (ℤ𝑁)) → 𝑘 ∈ ℕ0)
385, 37sylan 580 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘 ∈ ℕ0)
3935, 36, 3, 38smupp1 15662 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝑃‘(𝑘 + 1)) = ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}))
405nn0red 11804 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑁 ∈ ℝ)
4140adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑁 ∈ ℝ)
4238nn0red 11804 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘 ∈ ℝ)
43 eluzle 12106 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (ℤ𝑁) → 𝑁𝑘)
4443adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑁𝑘)
4541, 42, 44lensymd 10638 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (ℤ𝑁)) → ¬ 𝑘 < 𝑁)
46 smupvallem.a . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐴 ⊆ (0..^𝑁))
4746adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝐴 ⊆ (0..^𝑁))
4847sseld 3888 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝑘𝐴𝑘 ∈ (0..^𝑁)))
49 elfzolt2 12897 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (0..^𝑁) → 𝑘 < 𝑁)
5048, 49syl6 35 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝑘𝐴𝑘 < 𝑁))
5150adantrd 492 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵) → 𝑘 < 𝑁))
5245, 51mtod 199 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (ℤ𝑁)) → ¬ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵))
5352ralrimivw 3150 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (ℤ𝑁)) → ∀𝑛 ∈ ℕ0 ¬ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵))
54 rabeq0 4258 . . . . . . . . . . . . . . . . 17 ({𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} = ∅ ↔ ∀𝑛 ∈ ℕ0 ¬ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵))
5553, 54sylibr 235 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ𝑁)) → {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} = ∅)
5655oveq2d 7032 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) = ((𝑃𝑘) sadd ∅))
574adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑃:ℕ0⟶𝒫 ℕ0)
5857, 38ffvelrnd 6717 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝑃𝑘) ∈ 𝒫 ℕ0)
5958elpwid 4465 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝑃𝑘) ⊆ ℕ0)
60 sadid1 15650 . . . . . . . . . . . . . . . 16 ((𝑃𝑘) ⊆ ℕ0 → ((𝑃𝑘) sadd ∅) = (𝑃𝑘))
6159, 60syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑃𝑘) sadd ∅) = (𝑃𝑘))
6239, 56, 613eqtrd 2835 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝑃‘(𝑘 + 1)) = (𝑃𝑘))
6362eqeq1d 2797 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑃‘(𝑘 + 1)) = (𝑃𝑁) ↔ (𝑃𝑘) = (𝑃𝑁)))
6463biimprd 249 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑃𝑘) = (𝑃𝑁) → (𝑃‘(𝑘 + 1)) = (𝑃𝑁)))
6564expcom 414 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑁) → (𝜑 → ((𝑃𝑘) = (𝑃𝑁) → (𝑃‘(𝑘 + 1)) = (𝑃𝑁))))
6665a2d 29 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑁) → ((𝜑 → (𝑃𝑘) = (𝑃𝑁)) → (𝜑 → (𝑃‘(𝑘 + 1)) = (𝑃𝑁))))
6727, 29, 31, 33, 34, 66uzind4i 12159 . . . . . . . . 9 (𝑀 ∈ (ℤ𝑁) → (𝜑 → (𝑃𝑀) = (𝑃𝑁)))
6824, 25, 67sylc 65 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → (𝑃𝑀) = (𝑃𝑁))
69 simpr 485 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → (𝑘 + 1) ∈ (ℤ𝑁))
7027, 29, 31, 31, 34, 66uzind4i 12159 . . . . . . . . 9 ((𝑘 + 1) ∈ (ℤ𝑁) → (𝜑 → (𝑃‘(𝑘 + 1)) = (𝑃𝑁)))
7169, 25, 70sylc 65 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → (𝑃‘(𝑘 + 1)) = (𝑃𝑁))
7268, 71eqtr4d 2834 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → (𝑃𝑀) = (𝑃‘(𝑘 + 1)))
7372eleq2d 2868 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → (𝑘 ∈ (𝑃𝑀) ↔ 𝑘 ∈ (𝑃‘(𝑘 + 1))))
741ad2antrr 722 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → 𝐴 ⊆ ℕ0)
752ad2antrr 722 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → 𝐵 ⊆ ℕ0)
76 simplr 765 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → 𝑘 ∈ ℕ0)
7774, 75, 3, 76smuval 15663 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → (𝑘 ∈ (𝐴 smul 𝐵) ↔ 𝑘 ∈ (𝑃‘(𝑘 + 1))))
7873, 77bitr4d 283 . . . . 5 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → (𝑘 ∈ (𝑃𝑀) ↔ 𝑘 ∈ (𝐴 smul 𝐵)))
79 simpr 485 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
8079nn0zd 11934 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ)
8180peano2zd 11939 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℤ)
825nn0zd 11934 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
8382adantr 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → 𝑁 ∈ ℤ)
84 uztric 12115 . . . . . 6 (((𝑘 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ‘(𝑘 + 1)) ∨ (𝑘 + 1) ∈ (ℤ𝑁)))
8581, 83, 84syl2anc 584 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝑁 ∈ (ℤ‘(𝑘 + 1)) ∨ (𝑘 + 1) ∈ (ℤ𝑁)))
8623, 78, 85mpjaodan 953 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝑘 ∈ (𝑃𝑀) ↔ 𝑘 ∈ (𝐴 smul 𝐵)))
8786ex 413 . . 3 (𝜑 → (𝑘 ∈ ℕ0 → (𝑘 ∈ (𝑃𝑀) ↔ 𝑘 ∈ (𝐴 smul 𝐵))))
8811, 15, 87pm5.21ndd 381 . 2 (𝜑 → (𝑘 ∈ (𝑃𝑀) ↔ 𝑘 ∈ (𝐴 smul 𝐵)))
8988eqrdv 2793 1 (𝜑 → (𝑃𝑀) = (𝐴 smul 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 842   = wceq 1522  wcel 2081  wral 3105  {crab 3109  wss 3859  c0 4211  ifcif 4381  𝒫 cpw 4453   class class class wbr 4962  cmpt 5041  wf 6221  cfv 6225  (class class class)co 7016  cmpo 7018  cr 10382  0cc0 10383  1c1 10384   + caddc 10386   < clt 10521  cle 10522  cmin 10717  0cn0 11745  cz 11829  cuz 12093  ..^cfzo 12883  seqcseq 13219   sadd csad 15602   smul csmu 15603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-xor 1497  df-tru 1525  df-fal 1535  df-had 1576  df-cad 1589  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-disj 4931  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-oadd 7957  df-er 8139  df-map 8258  df-pm 8259  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-sup 8752  df-inf 8753  df-oi 8820  df-dju 9176  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-n0 11746  df-xnn0 11816  df-z 11830  df-uz 12094  df-rp 12240  df-fz 12743  df-fzo 12884  df-fl 13012  df-mod 13088  df-seq 13220  df-exp 13280  df-hash 13541  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-clim 14679  df-sum 14877  df-dvds 15441  df-bits 15604  df-sad 15633  df-smu 15658
This theorem is referenced by:  smupval  15670
  Copyright terms: Public domain W3C validator