MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smupvallem Structured version   Visualization version   GIF version

Theorem smupvallem 16118
Description: If 𝐴 only has elements less than 𝑁, then all elements of the partial sum sequence past 𝑁 already equal the final value. (Contributed by Mario Carneiro, 20-Sep-2016.)
Hypotheses
Ref Expression
smuval.a (𝜑𝐴 ⊆ ℕ0)
smuval.b (𝜑𝐵 ⊆ ℕ0)
smuval.p 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
smuval.n (𝜑𝑁 ∈ ℕ0)
smupvallem.a (𝜑𝐴 ⊆ (0..^𝑁))
smupvallem.m (𝜑𝑀 ∈ (ℤ𝑁))
Assertion
Ref Expression
smupvallem (𝜑 → (𝑃𝑀) = (𝐴 smul 𝐵))
Distinct variable groups:   𝑚,𝑛,𝑝,𝐴   𝑛,𝑁   𝜑,𝑛   𝐵,𝑚,𝑛,𝑝
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑚,𝑛,𝑝)   𝑀(𝑚,𝑛,𝑝)   𝑁(𝑚,𝑝)

Proof of Theorem smupvallem
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smuval.a . . . . . . 7 (𝜑𝐴 ⊆ ℕ0)
2 smuval.b . . . . . . 7 (𝜑𝐵 ⊆ ℕ0)
3 smuval.p . . . . . . 7 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
41, 2, 3smupf 16113 . . . . . 6 (𝜑𝑃:ℕ0⟶𝒫 ℕ0)
5 smuval.n . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
6 smupvallem.m . . . . . . 7 (𝜑𝑀 ∈ (ℤ𝑁))
7 eluznn0 12586 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ ℕ0)
85, 6, 7syl2anc 583 . . . . . 6 (𝜑𝑀 ∈ ℕ0)
94, 8ffvelrnd 6944 . . . . 5 (𝜑 → (𝑃𝑀) ∈ 𝒫 ℕ0)
109elpwid 4541 . . . 4 (𝜑 → (𝑃𝑀) ⊆ ℕ0)
1110sseld 3916 . . 3 (𝜑 → (𝑘 ∈ (𝑃𝑀) → 𝑘 ∈ ℕ0))
121, 2, 3smufval 16112 . . . . 5 (𝜑 → (𝐴 smul 𝐵) = {𝑘 ∈ ℕ0𝑘 ∈ (𝑃‘(𝑘 + 1))})
13 ssrab2 4009 . . . . 5 {𝑘 ∈ ℕ0𝑘 ∈ (𝑃‘(𝑘 + 1))} ⊆ ℕ0
1412, 13eqsstrdi 3971 . . . 4 (𝜑 → (𝐴 smul 𝐵) ⊆ ℕ0)
1514sseld 3916 . . 3 (𝜑 → (𝑘 ∈ (𝐴 smul 𝐵) → 𝑘 ∈ ℕ0))
161ad2antrr 722 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑁 ∈ (ℤ‘(𝑘 + 1))) → 𝐴 ⊆ ℕ0)
172ad2antrr 722 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑁 ∈ (ℤ‘(𝑘 + 1))) → 𝐵 ⊆ ℕ0)
18 simplr 765 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑁 ∈ (ℤ‘(𝑘 + 1))) → 𝑘 ∈ ℕ0)
196adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝑀 ∈ (ℤ𝑁))
20 uztrn 12529 . . . . . . . 8 ((𝑀 ∈ (ℤ𝑁) ∧ 𝑁 ∈ (ℤ‘(𝑘 + 1))) → 𝑀 ∈ (ℤ‘(𝑘 + 1)))
2119, 20sylan 579 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑁 ∈ (ℤ‘(𝑘 + 1))) → 𝑀 ∈ (ℤ‘(𝑘 + 1)))
2216, 17, 3, 18, 21smuval2 16117 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑁 ∈ (ℤ‘(𝑘 + 1))) → (𝑘 ∈ (𝐴 smul 𝐵) ↔ 𝑘 ∈ (𝑃𝑀)))
2322bicomd 222 . . . . 5 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑁 ∈ (ℤ‘(𝑘 + 1))) → (𝑘 ∈ (𝑃𝑀) ↔ 𝑘 ∈ (𝐴 smul 𝐵)))
246ad2antrr 722 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → 𝑀 ∈ (ℤ𝑁))
25 simpll 763 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → 𝜑)
26 fveqeq2 6765 . . . . . . . . . . 11 (𝑥 = 𝑁 → ((𝑃𝑥) = (𝑃𝑁) ↔ (𝑃𝑁) = (𝑃𝑁)))
2726imbi2d 340 . . . . . . . . . 10 (𝑥 = 𝑁 → ((𝜑 → (𝑃𝑥) = (𝑃𝑁)) ↔ (𝜑 → (𝑃𝑁) = (𝑃𝑁))))
28 fveqeq2 6765 . . . . . . . . . . 11 (𝑥 = 𝑘 → ((𝑃𝑥) = (𝑃𝑁) ↔ (𝑃𝑘) = (𝑃𝑁)))
2928imbi2d 340 . . . . . . . . . 10 (𝑥 = 𝑘 → ((𝜑 → (𝑃𝑥) = (𝑃𝑁)) ↔ (𝜑 → (𝑃𝑘) = (𝑃𝑁))))
30 fveqeq2 6765 . . . . . . . . . . 11 (𝑥 = (𝑘 + 1) → ((𝑃𝑥) = (𝑃𝑁) ↔ (𝑃‘(𝑘 + 1)) = (𝑃𝑁)))
3130imbi2d 340 . . . . . . . . . 10 (𝑥 = (𝑘 + 1) → ((𝜑 → (𝑃𝑥) = (𝑃𝑁)) ↔ (𝜑 → (𝑃‘(𝑘 + 1)) = (𝑃𝑁))))
32 fveqeq2 6765 . . . . . . . . . . 11 (𝑥 = 𝑀 → ((𝑃𝑥) = (𝑃𝑁) ↔ (𝑃𝑀) = (𝑃𝑁)))
3332imbi2d 340 . . . . . . . . . 10 (𝑥 = 𝑀 → ((𝜑 → (𝑃𝑥) = (𝑃𝑁)) ↔ (𝜑 → (𝑃𝑀) = (𝑃𝑁))))
34 eqidd 2739 . . . . . . . . . 10 (𝜑 → (𝑃𝑁) = (𝑃𝑁))
351adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝐴 ⊆ ℕ0)
362adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝐵 ⊆ ℕ0)
37 eluznn0 12586 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0𝑘 ∈ (ℤ𝑁)) → 𝑘 ∈ ℕ0)
385, 37sylan 579 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘 ∈ ℕ0)
3935, 36, 3, 38smupp1 16115 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝑃‘(𝑘 + 1)) = ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}))
405nn0red 12224 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑁 ∈ ℝ)
4140adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑁 ∈ ℝ)
4238nn0red 12224 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘 ∈ ℝ)
43 eluzle 12524 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (ℤ𝑁) → 𝑁𝑘)
4443adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑁𝑘)
4541, 42, 44lensymd 11056 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (ℤ𝑁)) → ¬ 𝑘 < 𝑁)
46 smupvallem.a . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐴 ⊆ (0..^𝑁))
4746adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝐴 ⊆ (0..^𝑁))
4847sseld 3916 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝑘𝐴𝑘 ∈ (0..^𝑁)))
49 elfzolt2 13325 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (0..^𝑁) → 𝑘 < 𝑁)
5048, 49syl6 35 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝑘𝐴𝑘 < 𝑁))
5150adantrd 491 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵) → 𝑘 < 𝑁))
5245, 51mtod 197 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (ℤ𝑁)) → ¬ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵))
5352ralrimivw 3108 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (ℤ𝑁)) → ∀𝑛 ∈ ℕ0 ¬ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵))
54 rabeq0 4315 . . . . . . . . . . . . . . . . 17 ({𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} = ∅ ↔ ∀𝑛 ∈ ℕ0 ¬ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵))
5553, 54sylibr 233 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ𝑁)) → {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} = ∅)
5655oveq2d 7271 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) = ((𝑃𝑘) sadd ∅))
574adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑃:ℕ0⟶𝒫 ℕ0)
5857, 38ffvelrnd 6944 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝑃𝑘) ∈ 𝒫 ℕ0)
5958elpwid 4541 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝑃𝑘) ⊆ ℕ0)
60 sadid1 16103 . . . . . . . . . . . . . . . 16 ((𝑃𝑘) ⊆ ℕ0 → ((𝑃𝑘) sadd ∅) = (𝑃𝑘))
6159, 60syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑃𝑘) sadd ∅) = (𝑃𝑘))
6239, 56, 613eqtrd 2782 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝑃‘(𝑘 + 1)) = (𝑃𝑘))
6362eqeq1d 2740 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑃‘(𝑘 + 1)) = (𝑃𝑁) ↔ (𝑃𝑘) = (𝑃𝑁)))
6463biimprd 247 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑃𝑘) = (𝑃𝑁) → (𝑃‘(𝑘 + 1)) = (𝑃𝑁)))
6564expcom 413 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑁) → (𝜑 → ((𝑃𝑘) = (𝑃𝑁) → (𝑃‘(𝑘 + 1)) = (𝑃𝑁))))
6665a2d 29 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑁) → ((𝜑 → (𝑃𝑘) = (𝑃𝑁)) → (𝜑 → (𝑃‘(𝑘 + 1)) = (𝑃𝑁))))
6727, 29, 31, 33, 34, 66uzind4i 12579 . . . . . . . . 9 (𝑀 ∈ (ℤ𝑁) → (𝜑 → (𝑃𝑀) = (𝑃𝑁)))
6824, 25, 67sylc 65 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → (𝑃𝑀) = (𝑃𝑁))
69 simpr 484 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → (𝑘 + 1) ∈ (ℤ𝑁))
7027, 29, 31, 31, 34, 66uzind4i 12579 . . . . . . . . 9 ((𝑘 + 1) ∈ (ℤ𝑁) → (𝜑 → (𝑃‘(𝑘 + 1)) = (𝑃𝑁)))
7169, 25, 70sylc 65 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → (𝑃‘(𝑘 + 1)) = (𝑃𝑁))
7268, 71eqtr4d 2781 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → (𝑃𝑀) = (𝑃‘(𝑘 + 1)))
7372eleq2d 2824 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → (𝑘 ∈ (𝑃𝑀) ↔ 𝑘 ∈ (𝑃‘(𝑘 + 1))))
741ad2antrr 722 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → 𝐴 ⊆ ℕ0)
752ad2antrr 722 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → 𝐵 ⊆ ℕ0)
76 simplr 765 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → 𝑘 ∈ ℕ0)
7774, 75, 3, 76smuval 16116 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → (𝑘 ∈ (𝐴 smul 𝐵) ↔ 𝑘 ∈ (𝑃‘(𝑘 + 1))))
7873, 77bitr4d 281 . . . . 5 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → (𝑘 ∈ (𝑃𝑀) ↔ 𝑘 ∈ (𝐴 smul 𝐵)))
79 simpr 484 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
8079nn0zd 12353 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ)
8180peano2zd 12358 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℤ)
825nn0zd 12353 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
8382adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → 𝑁 ∈ ℤ)
84 uztric 12535 . . . . . 6 (((𝑘 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ‘(𝑘 + 1)) ∨ (𝑘 + 1) ∈ (ℤ𝑁)))
8581, 83, 84syl2anc 583 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝑁 ∈ (ℤ‘(𝑘 + 1)) ∨ (𝑘 + 1) ∈ (ℤ𝑁)))
8623, 78, 85mpjaodan 955 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝑘 ∈ (𝑃𝑀) ↔ 𝑘 ∈ (𝐴 smul 𝐵)))
8786ex 412 . . 3 (𝜑 → (𝑘 ∈ ℕ0 → (𝑘 ∈ (𝑃𝑀) ↔ 𝑘 ∈ (𝐴 smul 𝐵))))
8811, 15, 87pm5.21ndd 380 . 2 (𝜑 → (𝑘 ∈ (𝑃𝑀) ↔ 𝑘 ∈ (𝐴 smul 𝐵)))
8988eqrdv 2736 1 (𝜑 → (𝑃𝑀) = (𝐴 smul 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wral 3063  {crab 3067  wss 3883  c0 4253  ifcif 4456  𝒫 cpw 4530   class class class wbr 5070  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   < clt 10940  cle 10941  cmin 11135  0cn0 12163  cz 12249  cuz 12511  ..^cfzo 13311  seqcseq 13649   sadd csad 16055   smul csmu 16056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-xor 1504  df-tru 1542  df-fal 1552  df-had 1596  df-cad 1610  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-dvds 15892  df-bits 16057  df-sad 16086  df-smu 16111
This theorem is referenced by:  smupval  16123
  Copyright terms: Public domain W3C validator