MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smupvallem Structured version   Visualization version   GIF version

Theorem smupvallem 16460
Description: If 𝐴 only has elements less than 𝑁, then all elements of the partial sum sequence past 𝑁 already equal the final value. (Contributed by Mario Carneiro, 20-Sep-2016.)
Hypotheses
Ref Expression
smuval.a (𝜑𝐴 ⊆ ℕ0)
smuval.b (𝜑𝐵 ⊆ ℕ0)
smuval.p 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
smuval.n (𝜑𝑁 ∈ ℕ0)
smupvallem.a (𝜑𝐴 ⊆ (0..^𝑁))
smupvallem.m (𝜑𝑀 ∈ (ℤ𝑁))
Assertion
Ref Expression
smupvallem (𝜑 → (𝑃𝑀) = (𝐴 smul 𝐵))
Distinct variable groups:   𝑚,𝑛,𝑝,𝐴   𝑛,𝑁   𝜑,𝑛   𝐵,𝑚,𝑛,𝑝
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑚,𝑛,𝑝)   𝑀(𝑚,𝑛,𝑝)   𝑁(𝑚,𝑝)

Proof of Theorem smupvallem
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smuval.a . . . . . . 7 (𝜑𝐴 ⊆ ℕ0)
2 smuval.b . . . . . . 7 (𝜑𝐵 ⊆ ℕ0)
3 smuval.p . . . . . . 7 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
41, 2, 3smupf 16455 . . . . . 6 (𝜑𝑃:ℕ0⟶𝒫 ℕ0)
5 smuval.n . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
6 smupvallem.m . . . . . . 7 (𝜑𝑀 ∈ (ℤ𝑁))
7 eluznn0 12883 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ ℕ0)
85, 6, 7syl2anc 584 . . . . . 6 (𝜑𝑀 ∈ ℕ0)
94, 8ffvelcdmd 7060 . . . . 5 (𝜑 → (𝑃𝑀) ∈ 𝒫 ℕ0)
109elpwid 4575 . . . 4 (𝜑 → (𝑃𝑀) ⊆ ℕ0)
1110sseld 3948 . . 3 (𝜑 → (𝑘 ∈ (𝑃𝑀) → 𝑘 ∈ ℕ0))
121, 2, 3smufval 16454 . . . . 5 (𝜑 → (𝐴 smul 𝐵) = {𝑘 ∈ ℕ0𝑘 ∈ (𝑃‘(𝑘 + 1))})
13 ssrab2 4046 . . . . 5 {𝑘 ∈ ℕ0𝑘 ∈ (𝑃‘(𝑘 + 1))} ⊆ ℕ0
1412, 13eqsstrdi 3994 . . . 4 (𝜑 → (𝐴 smul 𝐵) ⊆ ℕ0)
1514sseld 3948 . . 3 (𝜑 → (𝑘 ∈ (𝐴 smul 𝐵) → 𝑘 ∈ ℕ0))
161ad2antrr 726 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑁 ∈ (ℤ‘(𝑘 + 1))) → 𝐴 ⊆ ℕ0)
172ad2antrr 726 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑁 ∈ (ℤ‘(𝑘 + 1))) → 𝐵 ⊆ ℕ0)
18 simplr 768 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑁 ∈ (ℤ‘(𝑘 + 1))) → 𝑘 ∈ ℕ0)
196adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝑀 ∈ (ℤ𝑁))
20 uztrn 12818 . . . . . . . 8 ((𝑀 ∈ (ℤ𝑁) ∧ 𝑁 ∈ (ℤ‘(𝑘 + 1))) → 𝑀 ∈ (ℤ‘(𝑘 + 1)))
2119, 20sylan 580 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑁 ∈ (ℤ‘(𝑘 + 1))) → 𝑀 ∈ (ℤ‘(𝑘 + 1)))
2216, 17, 3, 18, 21smuval2 16459 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑁 ∈ (ℤ‘(𝑘 + 1))) → (𝑘 ∈ (𝐴 smul 𝐵) ↔ 𝑘 ∈ (𝑃𝑀)))
2322bicomd 223 . . . . 5 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑁 ∈ (ℤ‘(𝑘 + 1))) → (𝑘 ∈ (𝑃𝑀) ↔ 𝑘 ∈ (𝐴 smul 𝐵)))
246ad2antrr 726 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → 𝑀 ∈ (ℤ𝑁))
25 simpll 766 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → 𝜑)
26 fveqeq2 6870 . . . . . . . . . . 11 (𝑥 = 𝑁 → ((𝑃𝑥) = (𝑃𝑁) ↔ (𝑃𝑁) = (𝑃𝑁)))
2726imbi2d 340 . . . . . . . . . 10 (𝑥 = 𝑁 → ((𝜑 → (𝑃𝑥) = (𝑃𝑁)) ↔ (𝜑 → (𝑃𝑁) = (𝑃𝑁))))
28 fveqeq2 6870 . . . . . . . . . . 11 (𝑥 = 𝑘 → ((𝑃𝑥) = (𝑃𝑁) ↔ (𝑃𝑘) = (𝑃𝑁)))
2928imbi2d 340 . . . . . . . . . 10 (𝑥 = 𝑘 → ((𝜑 → (𝑃𝑥) = (𝑃𝑁)) ↔ (𝜑 → (𝑃𝑘) = (𝑃𝑁))))
30 fveqeq2 6870 . . . . . . . . . . 11 (𝑥 = (𝑘 + 1) → ((𝑃𝑥) = (𝑃𝑁) ↔ (𝑃‘(𝑘 + 1)) = (𝑃𝑁)))
3130imbi2d 340 . . . . . . . . . 10 (𝑥 = (𝑘 + 1) → ((𝜑 → (𝑃𝑥) = (𝑃𝑁)) ↔ (𝜑 → (𝑃‘(𝑘 + 1)) = (𝑃𝑁))))
32 fveqeq2 6870 . . . . . . . . . . 11 (𝑥 = 𝑀 → ((𝑃𝑥) = (𝑃𝑁) ↔ (𝑃𝑀) = (𝑃𝑁)))
3332imbi2d 340 . . . . . . . . . 10 (𝑥 = 𝑀 → ((𝜑 → (𝑃𝑥) = (𝑃𝑁)) ↔ (𝜑 → (𝑃𝑀) = (𝑃𝑁))))
34 eqidd 2731 . . . . . . . . . 10 (𝜑 → (𝑃𝑁) = (𝑃𝑁))
351adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝐴 ⊆ ℕ0)
362adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝐵 ⊆ ℕ0)
37 eluznn0 12883 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0𝑘 ∈ (ℤ𝑁)) → 𝑘 ∈ ℕ0)
385, 37sylan 580 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘 ∈ ℕ0)
3935, 36, 3, 38smupp1 16457 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝑃‘(𝑘 + 1)) = ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}))
405nn0red 12511 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑁 ∈ ℝ)
4140adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑁 ∈ ℝ)
4238nn0red 12511 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘 ∈ ℝ)
43 eluzle 12813 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (ℤ𝑁) → 𝑁𝑘)
4443adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑁𝑘)
4541, 42, 44lensymd 11332 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (ℤ𝑁)) → ¬ 𝑘 < 𝑁)
46 smupvallem.a . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐴 ⊆ (0..^𝑁))
4746adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝐴 ⊆ (0..^𝑁))
4847sseld 3948 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝑘𝐴𝑘 ∈ (0..^𝑁)))
49 elfzolt2 13636 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (0..^𝑁) → 𝑘 < 𝑁)
5048, 49syl6 35 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝑘𝐴𝑘 < 𝑁))
5150adantrd 491 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵) → 𝑘 < 𝑁))
5245, 51mtod 198 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (ℤ𝑁)) → ¬ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵))
5352ralrimivw 3130 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (ℤ𝑁)) → ∀𝑛 ∈ ℕ0 ¬ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵))
54 rabeq0 4354 . . . . . . . . . . . . . . . . 17 ({𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} = ∅ ↔ ∀𝑛 ∈ ℕ0 ¬ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵))
5553, 54sylibr 234 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ𝑁)) → {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} = ∅)
5655oveq2d 7406 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) = ((𝑃𝑘) sadd ∅))
574adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑃:ℕ0⟶𝒫 ℕ0)
5857, 38ffvelcdmd 7060 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝑃𝑘) ∈ 𝒫 ℕ0)
5958elpwid 4575 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝑃𝑘) ⊆ ℕ0)
60 sadid1 16445 . . . . . . . . . . . . . . . 16 ((𝑃𝑘) ⊆ ℕ0 → ((𝑃𝑘) sadd ∅) = (𝑃𝑘))
6159, 60syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑃𝑘) sadd ∅) = (𝑃𝑘))
6239, 56, 613eqtrd 2769 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝑃‘(𝑘 + 1)) = (𝑃𝑘))
6362eqeq1d 2732 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑃‘(𝑘 + 1)) = (𝑃𝑁) ↔ (𝑃𝑘) = (𝑃𝑁)))
6463biimprd 248 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑃𝑘) = (𝑃𝑁) → (𝑃‘(𝑘 + 1)) = (𝑃𝑁)))
6564expcom 413 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑁) → (𝜑 → ((𝑃𝑘) = (𝑃𝑁) → (𝑃‘(𝑘 + 1)) = (𝑃𝑁))))
6665a2d 29 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑁) → ((𝜑 → (𝑃𝑘) = (𝑃𝑁)) → (𝜑 → (𝑃‘(𝑘 + 1)) = (𝑃𝑁))))
6727, 29, 31, 33, 34, 66uzind4i 12876 . . . . . . . . 9 (𝑀 ∈ (ℤ𝑁) → (𝜑 → (𝑃𝑀) = (𝑃𝑁)))
6824, 25, 67sylc 65 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → (𝑃𝑀) = (𝑃𝑁))
69 simpr 484 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → (𝑘 + 1) ∈ (ℤ𝑁))
7027, 29, 31, 31, 34, 66uzind4i 12876 . . . . . . . . 9 ((𝑘 + 1) ∈ (ℤ𝑁) → (𝜑 → (𝑃‘(𝑘 + 1)) = (𝑃𝑁)))
7169, 25, 70sylc 65 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → (𝑃‘(𝑘 + 1)) = (𝑃𝑁))
7268, 71eqtr4d 2768 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → (𝑃𝑀) = (𝑃‘(𝑘 + 1)))
7372eleq2d 2815 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → (𝑘 ∈ (𝑃𝑀) ↔ 𝑘 ∈ (𝑃‘(𝑘 + 1))))
741ad2antrr 726 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → 𝐴 ⊆ ℕ0)
752ad2antrr 726 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → 𝐵 ⊆ ℕ0)
76 simplr 768 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → 𝑘 ∈ ℕ0)
7774, 75, 3, 76smuval 16458 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → (𝑘 ∈ (𝐴 smul 𝐵) ↔ 𝑘 ∈ (𝑃‘(𝑘 + 1))))
7873, 77bitr4d 282 . . . . 5 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → (𝑘 ∈ (𝑃𝑀) ↔ 𝑘 ∈ (𝐴 smul 𝐵)))
79 simpr 484 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
8079nn0zd 12562 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ)
8180peano2zd 12648 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℤ)
825nn0zd 12562 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
8382adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → 𝑁 ∈ ℤ)
84 uztric 12824 . . . . . 6 (((𝑘 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ‘(𝑘 + 1)) ∨ (𝑘 + 1) ∈ (ℤ𝑁)))
8581, 83, 84syl2anc 584 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝑁 ∈ (ℤ‘(𝑘 + 1)) ∨ (𝑘 + 1) ∈ (ℤ𝑁)))
8623, 78, 85mpjaodan 960 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝑘 ∈ (𝑃𝑀) ↔ 𝑘 ∈ (𝐴 smul 𝐵)))
8786ex 412 . . 3 (𝜑 → (𝑘 ∈ ℕ0 → (𝑘 ∈ (𝑃𝑀) ↔ 𝑘 ∈ (𝐴 smul 𝐵))))
8811, 15, 87pm5.21ndd 379 . 2 (𝜑 → (𝑘 ∈ (𝑃𝑀) ↔ 𝑘 ∈ (𝐴 smul 𝐵)))
8988eqrdv 2728 1 (𝜑 → (𝑃𝑀) = (𝐴 smul 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3045  {crab 3408  wss 3917  c0 4299  ifcif 4491  𝒫 cpw 4566   class class class wbr 5110  cmpt 5191  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   < clt 11215  cle 11216  cmin 11412  0cn0 12449  cz 12536  cuz 12800  ..^cfzo 13622  seqcseq 13973   sadd csad 16397   smul csmu 16398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-had 1594  df-cad 1607  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-dvds 16230  df-bits 16399  df-sad 16428  df-smu 16453
This theorem is referenced by:  smupval  16465
  Copyright terms: Public domain W3C validator