MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcmax Structured version   Visualization version   GIF version

Theorem bcmax 27217
Description: The binomial coefficient takes its maximum value at the center. (Contributed by Mario Carneiro, 5-Mar-2014.)
Assertion
Ref Expression
bcmax ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((2 · 𝑁)C𝐾) ≤ ((2 · 𝑁)C𝑁))

Proof of Theorem bcmax
StepHypRef Expression
1 2nn0 12405 . . . 4 2 ∈ ℕ0
2 simpll 766 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝐾)) → 𝑁 ∈ ℕ0)
3 nn0mulcl 12424 . . . 4 ((2 ∈ ℕ0𝑁 ∈ ℕ0) → (2 · 𝑁) ∈ ℕ0)
41, 2, 3sylancr 587 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝐾)) → (2 · 𝑁) ∈ ℕ0)
5 simpr 484 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝐾)) → 𝑁 ∈ (ℤ𝐾))
6 nn0re 12397 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
76leidd 11690 . . . . 5 (𝑁 ∈ ℕ0𝑁𝑁)
8 nn0cn 12398 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
9 2cn 12207 . . . . . . 7 2 ∈ ℂ
10 2ne0 12236 . . . . . . 7 2 ≠ 0
11 divcan3 11809 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · 𝑁) / 2) = 𝑁)
129, 10, 11mp3an23 1455 . . . . . 6 (𝑁 ∈ ℂ → ((2 · 𝑁) / 2) = 𝑁)
138, 12syl 17 . . . . 5 (𝑁 ∈ ℕ0 → ((2 · 𝑁) / 2) = 𝑁)
147, 13breqtrrd 5121 . . . 4 (𝑁 ∈ ℕ0𝑁 ≤ ((2 · 𝑁) / 2))
152, 14syl 17 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝐾)) → 𝑁 ≤ ((2 · 𝑁) / 2))
16 bcmono 27216 . . 3 (((2 · 𝑁) ∈ ℕ0𝑁 ∈ (ℤ𝐾) ∧ 𝑁 ≤ ((2 · 𝑁) / 2)) → ((2 · 𝑁)C𝐾) ≤ ((2 · 𝑁)C𝑁))
174, 5, 15, 16syl3anc 1373 . 2 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝐾)) → ((2 · 𝑁)C𝐾) ≤ ((2 · 𝑁)C𝑁))
18 simpll 766 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁 ∈ ℕ0)
191, 18, 3sylancr 587 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → (2 · 𝑁) ∈ ℕ0)
20 simplr 768 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝐾 ∈ ℤ)
21 bccmpl 14218 . . . 4 (((2 · 𝑁) ∈ ℕ0𝐾 ∈ ℤ) → ((2 · 𝑁)C𝐾) = ((2 · 𝑁)C((2 · 𝑁) − 𝐾)))
2219, 20, 21syl2anc 584 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → ((2 · 𝑁)C𝐾) = ((2 · 𝑁)C((2 · 𝑁) − 𝐾)))
2318nn0red 12450 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁 ∈ ℝ)
2423recnd 11147 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁 ∈ ℂ)
25242timesd 12371 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → (2 · 𝑁) = (𝑁 + 𝑁))
2620zred 12583 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝐾 ∈ ℝ)
27 eluzle 12751 . . . . . . . . 9 (𝐾 ∈ (ℤ𝑁) → 𝑁𝐾)
2827adantl 481 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁𝐾)
2923, 26, 23, 28leadd2dd 11739 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → (𝑁 + 𝑁) ≤ (𝑁 + 𝐾))
3025, 29eqbrtrd 5115 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → (2 · 𝑁) ≤ (𝑁 + 𝐾))
3119nn0red 12450 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → (2 · 𝑁) ∈ ℝ)
3231, 26, 23lesubaddd 11721 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → (((2 · 𝑁) − 𝐾) ≤ 𝑁 ↔ (2 · 𝑁) ≤ (𝑁 + 𝐾)))
3330, 32mpbird 257 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → ((2 · 𝑁) − 𝐾) ≤ 𝑁)
3419nn0zd 12500 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → (2 · 𝑁) ∈ ℤ)
3534, 20zsubcld 12588 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → ((2 · 𝑁) − 𝐾) ∈ ℤ)
3618nn0zd 12500 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁 ∈ ℤ)
37 eluz 12752 . . . . . 6 ((((2 · 𝑁) − 𝐾) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ‘((2 · 𝑁) − 𝐾)) ↔ ((2 · 𝑁) − 𝐾) ≤ 𝑁))
3835, 36, 37syl2anc 584 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → (𝑁 ∈ (ℤ‘((2 · 𝑁) − 𝐾)) ↔ ((2 · 𝑁) − 𝐾) ≤ 𝑁))
3933, 38mpbird 257 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁 ∈ (ℤ‘((2 · 𝑁) − 𝐾)))
4018, 14syl 17 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁 ≤ ((2 · 𝑁) / 2))
41 bcmono 27216 . . . 4 (((2 · 𝑁) ∈ ℕ0𝑁 ∈ (ℤ‘((2 · 𝑁) − 𝐾)) ∧ 𝑁 ≤ ((2 · 𝑁) / 2)) → ((2 · 𝑁)C((2 · 𝑁) − 𝐾)) ≤ ((2 · 𝑁)C𝑁))
4219, 39, 40, 41syl3anc 1373 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → ((2 · 𝑁)C((2 · 𝑁) − 𝐾)) ≤ ((2 · 𝑁)C𝑁))
4322, 42eqbrtrd 5115 . 2 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → ((2 · 𝑁)C𝐾) ≤ ((2 · 𝑁)C𝑁))
44 simpr 484 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → 𝐾 ∈ ℤ)
45 nn0z 12499 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
4645adantr 480 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → 𝑁 ∈ ℤ)
47 uztric 12762 . . 3 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝐾) ∨ 𝐾 ∈ (ℤ𝑁)))
4844, 46, 47syl2anc 584 . 2 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁 ∈ (ℤ𝐾) ∨ 𝐾 ∈ (ℤ𝑁)))
4917, 43, 48mpjaodan 960 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((2 · 𝑁)C𝐾) ≤ ((2 · 𝑁)C𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2113  wne 2929   class class class wbr 5093  cfv 6486  (class class class)co 7352  cc 11011  0cc0 11013   + caddc 11016   · cmul 11018  cle 11154  cmin 11351   / cdiv 11781  2c2 12187  0cn0 12388  cz 12475  cuz 12738  Ccbc 14211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-fz 13410  df-seq 13911  df-fac 14183  df-bc 14212
This theorem is referenced by:  lcmineqlem17  42158
  Copyright terms: Public domain W3C validator