MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcmax Structured version   Visualization version   GIF version

Theorem bcmax 27214
Description: The binomial coefficient takes its maximum value at the center. (Contributed by Mario Carneiro, 5-Mar-2014.)
Assertion
Ref Expression
bcmax ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((2 · 𝑁)C𝐾) ≤ ((2 · 𝑁)C𝑁))

Proof of Theorem bcmax
StepHypRef Expression
1 2nn0 12395 . . . 4 2 ∈ ℕ0
2 simpll 766 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝐾)) → 𝑁 ∈ ℕ0)
3 nn0mulcl 12414 . . . 4 ((2 ∈ ℕ0𝑁 ∈ ℕ0) → (2 · 𝑁) ∈ ℕ0)
41, 2, 3sylancr 587 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝐾)) → (2 · 𝑁) ∈ ℕ0)
5 simpr 484 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝐾)) → 𝑁 ∈ (ℤ𝐾))
6 nn0re 12387 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
76leidd 11680 . . . . 5 (𝑁 ∈ ℕ0𝑁𝑁)
8 nn0cn 12388 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
9 2cn 12197 . . . . . . 7 2 ∈ ℂ
10 2ne0 12226 . . . . . . 7 2 ≠ 0
11 divcan3 11799 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · 𝑁) / 2) = 𝑁)
129, 10, 11mp3an23 1455 . . . . . 6 (𝑁 ∈ ℂ → ((2 · 𝑁) / 2) = 𝑁)
138, 12syl 17 . . . . 5 (𝑁 ∈ ℕ0 → ((2 · 𝑁) / 2) = 𝑁)
147, 13breqtrrd 5119 . . . 4 (𝑁 ∈ ℕ0𝑁 ≤ ((2 · 𝑁) / 2))
152, 14syl 17 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝐾)) → 𝑁 ≤ ((2 · 𝑁) / 2))
16 bcmono 27213 . . 3 (((2 · 𝑁) ∈ ℕ0𝑁 ∈ (ℤ𝐾) ∧ 𝑁 ≤ ((2 · 𝑁) / 2)) → ((2 · 𝑁)C𝐾) ≤ ((2 · 𝑁)C𝑁))
174, 5, 15, 16syl3anc 1373 . 2 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝐾)) → ((2 · 𝑁)C𝐾) ≤ ((2 · 𝑁)C𝑁))
18 simpll 766 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁 ∈ ℕ0)
191, 18, 3sylancr 587 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → (2 · 𝑁) ∈ ℕ0)
20 simplr 768 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝐾 ∈ ℤ)
21 bccmpl 14213 . . . 4 (((2 · 𝑁) ∈ ℕ0𝐾 ∈ ℤ) → ((2 · 𝑁)C𝐾) = ((2 · 𝑁)C((2 · 𝑁) − 𝐾)))
2219, 20, 21syl2anc 584 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → ((2 · 𝑁)C𝐾) = ((2 · 𝑁)C((2 · 𝑁) − 𝐾)))
2318nn0red 12440 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁 ∈ ℝ)
2423recnd 11137 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁 ∈ ℂ)
25242timesd 12361 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → (2 · 𝑁) = (𝑁 + 𝑁))
2620zred 12574 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝐾 ∈ ℝ)
27 eluzle 12742 . . . . . . . . 9 (𝐾 ∈ (ℤ𝑁) → 𝑁𝐾)
2827adantl 481 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁𝐾)
2923, 26, 23, 28leadd2dd 11729 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → (𝑁 + 𝑁) ≤ (𝑁 + 𝐾))
3025, 29eqbrtrd 5113 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → (2 · 𝑁) ≤ (𝑁 + 𝐾))
3119nn0red 12440 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → (2 · 𝑁) ∈ ℝ)
3231, 26, 23lesubaddd 11711 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → (((2 · 𝑁) − 𝐾) ≤ 𝑁 ↔ (2 · 𝑁) ≤ (𝑁 + 𝐾)))
3330, 32mpbird 257 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → ((2 · 𝑁) − 𝐾) ≤ 𝑁)
3419nn0zd 12491 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → (2 · 𝑁) ∈ ℤ)
3534, 20zsubcld 12579 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → ((2 · 𝑁) − 𝐾) ∈ ℤ)
3618nn0zd 12491 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁 ∈ ℤ)
37 eluz 12743 . . . . . 6 ((((2 · 𝑁) − 𝐾) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ‘((2 · 𝑁) − 𝐾)) ↔ ((2 · 𝑁) − 𝐾) ≤ 𝑁))
3835, 36, 37syl2anc 584 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → (𝑁 ∈ (ℤ‘((2 · 𝑁) − 𝐾)) ↔ ((2 · 𝑁) − 𝐾) ≤ 𝑁))
3933, 38mpbird 257 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁 ∈ (ℤ‘((2 · 𝑁) − 𝐾)))
4018, 14syl 17 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁 ≤ ((2 · 𝑁) / 2))
41 bcmono 27213 . . . 4 (((2 · 𝑁) ∈ ℕ0𝑁 ∈ (ℤ‘((2 · 𝑁) − 𝐾)) ∧ 𝑁 ≤ ((2 · 𝑁) / 2)) → ((2 · 𝑁)C((2 · 𝑁) − 𝐾)) ≤ ((2 · 𝑁)C𝑁))
4219, 39, 40, 41syl3anc 1373 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → ((2 · 𝑁)C((2 · 𝑁) − 𝐾)) ≤ ((2 · 𝑁)C𝑁))
4322, 42eqbrtrd 5113 . 2 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → ((2 · 𝑁)C𝐾) ≤ ((2 · 𝑁)C𝑁))
44 simpr 484 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → 𝐾 ∈ ℤ)
45 nn0z 12490 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
4645adantr 480 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → 𝑁 ∈ ℤ)
47 uztric 12753 . . 3 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝐾) ∨ 𝐾 ∈ (ℤ𝑁)))
4844, 46, 47syl2anc 584 . 2 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁 ∈ (ℤ𝐾) ∨ 𝐾 ∈ (ℤ𝑁)))
4917, 43, 48mpjaodan 960 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((2 · 𝑁)C𝐾) ≤ ((2 · 𝑁)C𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5091  cfv 6481  (class class class)co 7346  cc 11001  0cc0 11003   + caddc 11006   · cmul 11008  cle 11144  cmin 11341   / cdiv 11771  2c2 12177  0cn0 12378  cz 12465  cuz 12729  Ccbc 14206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-n0 12379  df-z 12466  df-uz 12730  df-rp 12888  df-fz 13405  df-seq 13906  df-fac 14178  df-bc 14207
This theorem is referenced by:  lcmineqlem17  42077
  Copyright terms: Public domain W3C validator