MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcmax Structured version   Visualization version   GIF version

Theorem bcmax 26159
Description: The binomial coefficient takes its maximum value at the center. (Contributed by Mario Carneiro, 5-Mar-2014.)
Assertion
Ref Expression
bcmax ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((2 · 𝑁)C𝐾) ≤ ((2 · 𝑁)C𝑁))

Proof of Theorem bcmax
StepHypRef Expression
1 2nn0 12107 . . . 4 2 ∈ ℕ0
2 simpll 767 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝐾)) → 𝑁 ∈ ℕ0)
3 nn0mulcl 12126 . . . 4 ((2 ∈ ℕ0𝑁 ∈ ℕ0) → (2 · 𝑁) ∈ ℕ0)
41, 2, 3sylancr 590 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝐾)) → (2 · 𝑁) ∈ ℕ0)
5 simpr 488 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝐾)) → 𝑁 ∈ (ℤ𝐾))
6 nn0re 12099 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
76leidd 11398 . . . . 5 (𝑁 ∈ ℕ0𝑁𝑁)
8 nn0cn 12100 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
9 2cn 11905 . . . . . . 7 2 ∈ ℂ
10 2ne0 11934 . . . . . . 7 2 ≠ 0
11 divcan3 11516 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · 𝑁) / 2) = 𝑁)
129, 10, 11mp3an23 1455 . . . . . 6 (𝑁 ∈ ℂ → ((2 · 𝑁) / 2) = 𝑁)
138, 12syl 17 . . . . 5 (𝑁 ∈ ℕ0 → ((2 · 𝑁) / 2) = 𝑁)
147, 13breqtrrd 5081 . . . 4 (𝑁 ∈ ℕ0𝑁 ≤ ((2 · 𝑁) / 2))
152, 14syl 17 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝐾)) → 𝑁 ≤ ((2 · 𝑁) / 2))
16 bcmono 26158 . . 3 (((2 · 𝑁) ∈ ℕ0𝑁 ∈ (ℤ𝐾) ∧ 𝑁 ≤ ((2 · 𝑁) / 2)) → ((2 · 𝑁)C𝐾) ≤ ((2 · 𝑁)C𝑁))
174, 5, 15, 16syl3anc 1373 . 2 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝑁 ∈ (ℤ𝐾)) → ((2 · 𝑁)C𝐾) ≤ ((2 · 𝑁)C𝑁))
18 simpll 767 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁 ∈ ℕ0)
191, 18, 3sylancr 590 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → (2 · 𝑁) ∈ ℕ0)
20 simplr 769 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝐾 ∈ ℤ)
21 bccmpl 13875 . . . 4 (((2 · 𝑁) ∈ ℕ0𝐾 ∈ ℤ) → ((2 · 𝑁)C𝐾) = ((2 · 𝑁)C((2 · 𝑁) − 𝐾)))
2219, 20, 21syl2anc 587 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → ((2 · 𝑁)C𝐾) = ((2 · 𝑁)C((2 · 𝑁) − 𝐾)))
2318nn0red 12151 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁 ∈ ℝ)
2423recnd 10861 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁 ∈ ℂ)
25242timesd 12073 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → (2 · 𝑁) = (𝑁 + 𝑁))
2620zred 12282 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝐾 ∈ ℝ)
27 eluzle 12451 . . . . . . . . 9 (𝐾 ∈ (ℤ𝑁) → 𝑁𝐾)
2827adantl 485 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁𝐾)
2923, 26, 23, 28leadd2dd 11447 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → (𝑁 + 𝑁) ≤ (𝑁 + 𝐾))
3025, 29eqbrtrd 5075 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → (2 · 𝑁) ≤ (𝑁 + 𝐾))
3119nn0red 12151 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → (2 · 𝑁) ∈ ℝ)
3231, 26, 23lesubaddd 11429 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → (((2 · 𝑁) − 𝐾) ≤ 𝑁 ↔ (2 · 𝑁) ≤ (𝑁 + 𝐾)))
3330, 32mpbird 260 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → ((2 · 𝑁) − 𝐾) ≤ 𝑁)
3419nn0zd 12280 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → (2 · 𝑁) ∈ ℤ)
3534, 20zsubcld 12287 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → ((2 · 𝑁) − 𝐾) ∈ ℤ)
3618nn0zd 12280 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁 ∈ ℤ)
37 eluz 12452 . . . . . 6 ((((2 · 𝑁) − 𝐾) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ‘((2 · 𝑁) − 𝐾)) ↔ ((2 · 𝑁) − 𝐾) ≤ 𝑁))
3835, 36, 37syl2anc 587 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → (𝑁 ∈ (ℤ‘((2 · 𝑁) − 𝐾)) ↔ ((2 · 𝑁) − 𝐾) ≤ 𝑁))
3933, 38mpbird 260 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁 ∈ (ℤ‘((2 · 𝑁) − 𝐾)))
4018, 14syl 17 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝑁 ≤ ((2 · 𝑁) / 2))
41 bcmono 26158 . . . 4 (((2 · 𝑁) ∈ ℕ0𝑁 ∈ (ℤ‘((2 · 𝑁) − 𝐾)) ∧ 𝑁 ≤ ((2 · 𝑁) / 2)) → ((2 · 𝑁)C((2 · 𝑁) − 𝐾)) ≤ ((2 · 𝑁)C𝑁))
4219, 39, 40, 41syl3anc 1373 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → ((2 · 𝑁)C((2 · 𝑁) − 𝐾)) ≤ ((2 · 𝑁)C𝑁))
4322, 42eqbrtrd 5075 . 2 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (ℤ𝑁)) → ((2 · 𝑁)C𝐾) ≤ ((2 · 𝑁)C𝑁))
44 simpr 488 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → 𝐾 ∈ ℤ)
45 nn0z 12200 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
4645adantr 484 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → 𝑁 ∈ ℤ)
47 uztric 12462 . . 3 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝐾) ∨ 𝐾 ∈ (ℤ𝑁)))
4844, 46, 47syl2anc 587 . 2 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝑁 ∈ (ℤ𝐾) ∨ 𝐾 ∈ (ℤ𝑁)))
4917, 43, 48mpjaodan 959 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((2 · 𝑁)C𝐾) ≤ ((2 · 𝑁)C𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 847   = wceq 1543  wcel 2110  wne 2940   class class class wbr 5053  cfv 6380  (class class class)co 7213  cc 10727  0cc0 10729   + caddc 10732   · cmul 10734  cle 10868  cmin 11062   / cdiv 11489  2c2 11885  0cn0 12090  cz 12176  cuz 12438  Ccbc 13868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-fz 13096  df-seq 13575  df-fac 13840  df-bc 13869
This theorem is referenced by:  lcmineqlem17  39787
  Copyright terms: Public domain W3C validator