MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uz11 Structured version   Visualization version   GIF version

Theorem uz11 12877
Description: The upper integers function is one-to-one. (Contributed by NM, 12-Dec-2005.)
Assertion
Ref Expression
uz11 (𝑀 ∈ ℤ → ((ℤ𝑀) = (ℤ𝑁) ↔ 𝑀 = 𝑁))

Proof of Theorem uz11
StepHypRef Expression
1 uzid 12867 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
2 eleq2 2818 . . . . . 6 ((ℤ𝑀) = (ℤ𝑁) → (𝑀 ∈ (ℤ𝑀) ↔ 𝑀 ∈ (ℤ𝑁)))
3 eluzel2 12857 . . . . . 6 (𝑀 ∈ (ℤ𝑁) → 𝑁 ∈ ℤ)
42, 3biimtrdi 252 . . . . 5 ((ℤ𝑀) = (ℤ𝑁) → (𝑀 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ))
51, 4mpan9 506 . . . 4 ((𝑀 ∈ ℤ ∧ (ℤ𝑀) = (ℤ𝑁)) → 𝑁 ∈ ℤ)
6 uzid 12867 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
7 eleq2 2818 . . . . . . . . . . 11 ((ℤ𝑀) = (ℤ𝑁) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑁 ∈ (ℤ𝑁)))
86, 7imbitrrid 245 . . . . . . . . . 10 ((ℤ𝑀) = (ℤ𝑁) → (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑀)))
9 eluzle 12865 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
108, 9syl6 35 . . . . . . . . 9 ((ℤ𝑀) = (ℤ𝑁) → (𝑁 ∈ ℤ → 𝑀𝑁))
111, 2imbitrid 243 . . . . . . . . . 10 ((ℤ𝑀) = (ℤ𝑁) → (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑁)))
12 eluzle 12865 . . . . . . . . . 10 (𝑀 ∈ (ℤ𝑁) → 𝑁𝑀)
1311, 12syl6 35 . . . . . . . . 9 ((ℤ𝑀) = (ℤ𝑁) → (𝑀 ∈ ℤ → 𝑁𝑀))
1410, 13anim12d 608 . . . . . . . 8 ((ℤ𝑀) = (ℤ𝑁) → ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀𝑁𝑁𝑀)))
1514impl 455 . . . . . . 7 ((((ℤ𝑀) = (ℤ𝑁) ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (𝑀𝑁𝑁𝑀))
1615ancoms 458 . . . . . 6 ((𝑀 ∈ ℤ ∧ ((ℤ𝑀) = (ℤ𝑁) ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁𝑁𝑀))
1716anassrs 467 . . . . 5 (((𝑀 ∈ ℤ ∧ (ℤ𝑀) = (ℤ𝑁)) ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑁𝑀))
18 zre 12592 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
19 zre 12592 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
20 letri3 11329 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 = 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
2118, 19, 20syl2an 595 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
2221adantlr 714 . . . . 5 (((𝑀 ∈ ℤ ∧ (ℤ𝑀) = (ℤ𝑁)) ∧ 𝑁 ∈ ℤ) → (𝑀 = 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
2317, 22mpbird 257 . . . 4 (((𝑀 ∈ ℤ ∧ (ℤ𝑀) = (ℤ𝑁)) ∧ 𝑁 ∈ ℤ) → 𝑀 = 𝑁)
245, 23mpdan 686 . . 3 ((𝑀 ∈ ℤ ∧ (ℤ𝑀) = (ℤ𝑁)) → 𝑀 = 𝑁)
2524ex 412 . 2 (𝑀 ∈ ℤ → ((ℤ𝑀) = (ℤ𝑁) → 𝑀 = 𝑁))
26 fveq2 6897 . 2 (𝑀 = 𝑁 → (ℤ𝑀) = (ℤ𝑁))
2725, 26impbid1 224 1 (𝑀 ∈ ℤ → ((ℤ𝑀) = (ℤ𝑁) ↔ 𝑀 = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099   class class class wbr 5148  cfv 6548  cr 11137  cle 11279  cz 12588  cuz 12852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11194  ax-resscn 11195  ax-pre-lttri 11212  ax-pre-lttrn 11213
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-ov 7423  df-er 8724  df-en 8964  df-dom 8965  df-sdom 8966  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-neg 11477  df-z 12589  df-uz 12853
This theorem is referenced by:  fzopth  13570  ulm2  26320  fzoopth  46707
  Copyright terms: Public domain W3C validator