MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uz11 Structured version   Visualization version   GIF version

Theorem uz11 12825
Description: The upper integers function is one-to-one. (Contributed by NM, 12-Dec-2005.)
Assertion
Ref Expression
uz11 (𝑀 ∈ ℤ → ((ℤ𝑀) = (ℤ𝑁) ↔ 𝑀 = 𝑁))

Proof of Theorem uz11
StepHypRef Expression
1 uzid 12815 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
2 eleq2 2818 . . . . . 6 ((ℤ𝑀) = (ℤ𝑁) → (𝑀 ∈ (ℤ𝑀) ↔ 𝑀 ∈ (ℤ𝑁)))
3 eluzel2 12805 . . . . . 6 (𝑀 ∈ (ℤ𝑁) → 𝑁 ∈ ℤ)
42, 3biimtrdi 253 . . . . 5 ((ℤ𝑀) = (ℤ𝑁) → (𝑀 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ))
51, 4mpan9 506 . . . 4 ((𝑀 ∈ ℤ ∧ (ℤ𝑀) = (ℤ𝑁)) → 𝑁 ∈ ℤ)
6 uzid 12815 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
7 eleq2 2818 . . . . . . . . . . 11 ((ℤ𝑀) = (ℤ𝑁) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑁 ∈ (ℤ𝑁)))
86, 7imbitrrid 246 . . . . . . . . . 10 ((ℤ𝑀) = (ℤ𝑁) → (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑀)))
9 eluzle 12813 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
108, 9syl6 35 . . . . . . . . 9 ((ℤ𝑀) = (ℤ𝑁) → (𝑁 ∈ ℤ → 𝑀𝑁))
111, 2imbitrid 244 . . . . . . . . . 10 ((ℤ𝑀) = (ℤ𝑁) → (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑁)))
12 eluzle 12813 . . . . . . . . . 10 (𝑀 ∈ (ℤ𝑁) → 𝑁𝑀)
1311, 12syl6 35 . . . . . . . . 9 ((ℤ𝑀) = (ℤ𝑁) → (𝑀 ∈ ℤ → 𝑁𝑀))
1410, 13anim12d 609 . . . . . . . 8 ((ℤ𝑀) = (ℤ𝑁) → ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀𝑁𝑁𝑀)))
1514impl 455 . . . . . . 7 ((((ℤ𝑀) = (ℤ𝑁) ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (𝑀𝑁𝑁𝑀))
1615ancoms 458 . . . . . 6 ((𝑀 ∈ ℤ ∧ ((ℤ𝑀) = (ℤ𝑁) ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁𝑁𝑀))
1716anassrs 467 . . . . 5 (((𝑀 ∈ ℤ ∧ (ℤ𝑀) = (ℤ𝑁)) ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑁𝑀))
18 zre 12540 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
19 zre 12540 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
20 letri3 11266 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 = 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
2118, 19, 20syl2an 596 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
2221adantlr 715 . . . . 5 (((𝑀 ∈ ℤ ∧ (ℤ𝑀) = (ℤ𝑁)) ∧ 𝑁 ∈ ℤ) → (𝑀 = 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
2317, 22mpbird 257 . . . 4 (((𝑀 ∈ ℤ ∧ (ℤ𝑀) = (ℤ𝑁)) ∧ 𝑁 ∈ ℤ) → 𝑀 = 𝑁)
245, 23mpdan 687 . . 3 ((𝑀 ∈ ℤ ∧ (ℤ𝑀) = (ℤ𝑁)) → 𝑀 = 𝑁)
2524ex 412 . 2 (𝑀 ∈ ℤ → ((ℤ𝑀) = (ℤ𝑁) → 𝑀 = 𝑁))
26 fveq2 6861 . 2 (𝑀 = 𝑁 → (ℤ𝑀) = (ℤ𝑁))
2725, 26impbid1 225 1 (𝑀 ∈ ℤ → ((ℤ𝑀) = (ℤ𝑁) ↔ 𝑀 = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5110  cfv 6514  cr 11074  cle 11216  cz 12536  cuz 12800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-neg 11415  df-z 12537  df-uz 12801
This theorem is referenced by:  fzopth  13529  fzoopth  13730  ulm2  26301
  Copyright terms: Public domain W3C validator