MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uz11 Structured version   Visualization version   GIF version

Theorem uz11 12618
Description: The upper integers function is one-to-one. (Contributed by NM, 12-Dec-2005.)
Assertion
Ref Expression
uz11 (𝑀 ∈ ℤ → ((ℤ𝑀) = (ℤ𝑁) ↔ 𝑀 = 𝑁))

Proof of Theorem uz11
StepHypRef Expression
1 uzid 12608 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
2 eleq2 2829 . . . . . 6 ((ℤ𝑀) = (ℤ𝑁) → (𝑀 ∈ (ℤ𝑀) ↔ 𝑀 ∈ (ℤ𝑁)))
3 eluzel2 12598 . . . . . 6 (𝑀 ∈ (ℤ𝑁) → 𝑁 ∈ ℤ)
42, 3syl6bi 252 . . . . 5 ((ℤ𝑀) = (ℤ𝑁) → (𝑀 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ))
51, 4mpan9 507 . . . 4 ((𝑀 ∈ ℤ ∧ (ℤ𝑀) = (ℤ𝑁)) → 𝑁 ∈ ℤ)
6 uzid 12608 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
7 eleq2 2829 . . . . . . . . . . 11 ((ℤ𝑀) = (ℤ𝑁) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑁 ∈ (ℤ𝑁)))
86, 7syl5ibr 245 . . . . . . . . . 10 ((ℤ𝑀) = (ℤ𝑁) → (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑀)))
9 eluzle 12606 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
108, 9syl6 35 . . . . . . . . 9 ((ℤ𝑀) = (ℤ𝑁) → (𝑁 ∈ ℤ → 𝑀𝑁))
111, 2syl5ib 243 . . . . . . . . . 10 ((ℤ𝑀) = (ℤ𝑁) → (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑁)))
12 eluzle 12606 . . . . . . . . . 10 (𝑀 ∈ (ℤ𝑁) → 𝑁𝑀)
1311, 12syl6 35 . . . . . . . . 9 ((ℤ𝑀) = (ℤ𝑁) → (𝑀 ∈ ℤ → 𝑁𝑀))
1410, 13anim12d 609 . . . . . . . 8 ((ℤ𝑀) = (ℤ𝑁) → ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀𝑁𝑁𝑀)))
1514impl 456 . . . . . . 7 ((((ℤ𝑀) = (ℤ𝑁) ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → (𝑀𝑁𝑁𝑀))
1615ancoms 459 . . . . . 6 ((𝑀 ∈ ℤ ∧ ((ℤ𝑀) = (ℤ𝑁) ∧ 𝑁 ∈ ℤ)) → (𝑀𝑁𝑁𝑀))
1716anassrs 468 . . . . 5 (((𝑀 ∈ ℤ ∧ (ℤ𝑀) = (ℤ𝑁)) ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑁𝑀))
18 zre 12334 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
19 zre 12334 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
20 letri3 11071 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 = 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
2118, 19, 20syl2an 596 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
2221adantlr 712 . . . . 5 (((𝑀 ∈ ℤ ∧ (ℤ𝑀) = (ℤ𝑁)) ∧ 𝑁 ∈ ℤ) → (𝑀 = 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
2317, 22mpbird 256 . . . 4 (((𝑀 ∈ ℤ ∧ (ℤ𝑀) = (ℤ𝑁)) ∧ 𝑁 ∈ ℤ) → 𝑀 = 𝑁)
245, 23mpdan 684 . . 3 ((𝑀 ∈ ℤ ∧ (ℤ𝑀) = (ℤ𝑁)) → 𝑀 = 𝑁)
2524ex 413 . 2 (𝑀 ∈ ℤ → ((ℤ𝑀) = (ℤ𝑁) → 𝑀 = 𝑁))
26 fveq2 6771 . 2 (𝑀 = 𝑁 → (ℤ𝑀) = (ℤ𝑁))
2725, 26impbid1 224 1 (𝑀 ∈ ℤ → ((ℤ𝑀) = (ℤ𝑁) ↔ 𝑀 = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110   class class class wbr 5079  cfv 6432  cr 10881  cle 11021  cz 12330  cuz 12593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-cnex 10938  ax-resscn 10939  ax-pre-lttri 10956  ax-pre-lttrn 10957
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-nel 3052  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-po 5504  df-so 5505  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-ov 7275  df-er 8490  df-en 8726  df-dom 8727  df-sdom 8728  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025  df-le 11026  df-neg 11219  df-z 12331  df-uz 12594
This theorem is referenced by:  fzopth  13304  ulm2  25555  fzoopth  44798
  Copyright terms: Public domain W3C validator