MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodrb Structured version   Visualization version   GIF version

Theorem prodrb 15278
Description: Rebase the starting point of a product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypotheses
Ref Expression
prodmo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
prodmo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
prodrb.4 (𝜑𝑀 ∈ ℤ)
prodrb.5 (𝜑𝑁 ∈ ℤ)
prodrb.6 (𝜑𝐴 ⊆ (ℤ𝑀))
prodrb.7 (𝜑𝐴 ⊆ (ℤ𝑁))
Assertion
Ref Expression
prodrb (𝜑 → (seq𝑀( · , 𝐹) ⇝ 𝐶 ↔ seq𝑁( · , 𝐹) ⇝ 𝐶))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑁   𝑘,𝑀
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem prodrb
StepHypRef Expression
1 prodmo.1 . . 3 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
2 prodmo.2 . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
3 prodrb.4 . . 3 (𝜑𝑀 ∈ ℤ)
4 prodrb.5 . . 3 (𝜑𝑁 ∈ ℤ)
5 prodrb.6 . . 3 (𝜑𝐴 ⊆ (ℤ𝑀))
6 prodrb.7 . . 3 (𝜑𝐴 ⊆ (ℤ𝑁))
71, 2, 3, 4, 5, 6prodrblem2 15277 . 2 ((𝜑𝑁 ∈ (ℤ𝑀)) → (seq𝑀( · , 𝐹) ⇝ 𝐶 ↔ seq𝑁( · , 𝐹) ⇝ 𝐶))
81, 2, 4, 3, 6, 5prodrblem2 15277 . . 3 ((𝜑𝑀 ∈ (ℤ𝑁)) → (seq𝑁( · , 𝐹) ⇝ 𝐶 ↔ seq𝑀( · , 𝐹) ⇝ 𝐶))
98bicomd 226 . 2 ((𝜑𝑀 ∈ (ℤ𝑁)) → (seq𝑀( · , 𝐹) ⇝ 𝐶 ↔ seq𝑁( · , 𝐹) ⇝ 𝐶))
10 uztric 12254 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ∨ 𝑀 ∈ (ℤ𝑁)))
113, 4, 10syl2anc 587 . 2 (𝜑 → (𝑁 ∈ (ℤ𝑀) ∨ 𝑀 ∈ (ℤ𝑁)))
127, 9, 11mpjaodan 956 1 (𝜑 → (seq𝑀( · , 𝐹) ⇝ 𝐶 ↔ seq𝑁( · , 𝐹) ⇝ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  wss 3881  ifcif 4425   class class class wbr 5030  cmpt 5110  cfv 6324  cc 10524  1c1 10527   · cmul 10531  cz 11969  cuz 12231  seqcseq 13364  cli 14833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-seq 13365  df-clim 14837
This theorem is referenced by:  prodmo  15282  zprod  15283
  Copyright terms: Public domain W3C validator