| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xadd4d | Structured version Visualization version GIF version | ||
| Description: Rearrangement of 4 terms in a sum for extended addition, analogous to add4d 11379. (Contributed by Alexander van der Vekens, 21-Dec-2017.) |
| Ref | Expression |
|---|---|
| xadd4d.1 | ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞)) |
| xadd4d.2 | ⊢ (𝜑 → (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞)) |
| xadd4d.3 | ⊢ (𝜑 → (𝐶 ∈ ℝ* ∧ 𝐶 ≠ -∞)) |
| xadd4d.4 | ⊢ (𝜑 → (𝐷 ∈ ℝ* ∧ 𝐷 ≠ -∞)) |
| Ref | Expression |
|---|---|
| xadd4d | ⊢ (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xadd4d.3 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ ℝ* ∧ 𝐶 ≠ -∞)) | |
| 2 | xadd4d.2 | . . . 4 ⊢ (𝜑 → (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞)) | |
| 3 | xadd4d.4 | . . . 4 ⊢ (𝜑 → (𝐷 ∈ ℝ* ∧ 𝐷 ≠ -∞)) | |
| 4 | xaddass 13185 | . . . 4 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐶 ≠ -∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞) ∧ (𝐷 ∈ ℝ* ∧ 𝐷 ≠ -∞)) → ((𝐶 +𝑒 𝐵) +𝑒 𝐷) = (𝐶 +𝑒 (𝐵 +𝑒 𝐷))) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | . . 3 ⊢ (𝜑 → ((𝐶 +𝑒 𝐵) +𝑒 𝐷) = (𝐶 +𝑒 (𝐵 +𝑒 𝐷))) |
| 6 | 5 | oveq2d 7385 | . 2 ⊢ (𝜑 → (𝐴 +𝑒 ((𝐶 +𝑒 𝐵) +𝑒 𝐷)) = (𝐴 +𝑒 (𝐶 +𝑒 (𝐵 +𝑒 𝐷)))) |
| 7 | xadd4d.1 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞)) | |
| 8 | 1 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| 9 | 3 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℝ*) |
| 10 | 8, 9 | xaddcld 13237 | . . . 4 ⊢ (𝜑 → (𝐶 +𝑒 𝐷) ∈ ℝ*) |
| 11 | xaddnemnf 13172 | . . . . 5 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐶 ≠ -∞) ∧ (𝐷 ∈ ℝ* ∧ 𝐷 ≠ -∞)) → (𝐶 +𝑒 𝐷) ≠ -∞) | |
| 12 | 1, 3, 11 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐶 +𝑒 𝐷) ≠ -∞) |
| 13 | xaddass 13185 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞) ∧ ((𝐶 +𝑒 𝐷) ∈ ℝ* ∧ (𝐶 +𝑒 𝐷) ≠ -∞)) → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = (𝐴 +𝑒 (𝐵 +𝑒 (𝐶 +𝑒 𝐷)))) | |
| 14 | 7, 2, 10, 12, 13 | syl112anc 1376 | . . 3 ⊢ (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = (𝐴 +𝑒 (𝐵 +𝑒 (𝐶 +𝑒 𝐷)))) |
| 15 | 2 | simpld 494 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| 16 | xaddcom 13176 | . . . . . . 7 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 +𝑒 𝐵) = (𝐵 +𝑒 𝐶)) | |
| 17 | 8, 15, 16 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐶 +𝑒 𝐵) = (𝐵 +𝑒 𝐶)) |
| 18 | 17 | oveq1d 7384 | . . . . 5 ⊢ (𝜑 → ((𝐶 +𝑒 𝐵) +𝑒 𝐷) = ((𝐵 +𝑒 𝐶) +𝑒 𝐷)) |
| 19 | xaddass 13185 | . . . . . 6 ⊢ (((𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ* ∧ 𝐶 ≠ -∞) ∧ (𝐷 ∈ ℝ* ∧ 𝐷 ≠ -∞)) → ((𝐵 +𝑒 𝐶) +𝑒 𝐷) = (𝐵 +𝑒 (𝐶 +𝑒 𝐷))) | |
| 20 | 2, 1, 3, 19 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → ((𝐵 +𝑒 𝐶) +𝑒 𝐷) = (𝐵 +𝑒 (𝐶 +𝑒 𝐷))) |
| 21 | 18, 20 | eqtr2d 2765 | . . . 4 ⊢ (𝜑 → (𝐵 +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐶 +𝑒 𝐵) +𝑒 𝐷)) |
| 22 | 21 | oveq2d 7385 | . . 3 ⊢ (𝜑 → (𝐴 +𝑒 (𝐵 +𝑒 (𝐶 +𝑒 𝐷))) = (𝐴 +𝑒 ((𝐶 +𝑒 𝐵) +𝑒 𝐷))) |
| 23 | 14, 22 | eqtrd 2764 | . 2 ⊢ (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = (𝐴 +𝑒 ((𝐶 +𝑒 𝐵) +𝑒 𝐷))) |
| 24 | 15, 9 | xaddcld 13237 | . . 3 ⊢ (𝜑 → (𝐵 +𝑒 𝐷) ∈ ℝ*) |
| 25 | xaddnemnf 13172 | . . . 4 ⊢ (((𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞) ∧ (𝐷 ∈ ℝ* ∧ 𝐷 ≠ -∞)) → (𝐵 +𝑒 𝐷) ≠ -∞) | |
| 26 | 2, 3, 25 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐵 +𝑒 𝐷) ≠ -∞) |
| 27 | xaddass 13185 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ∧ (𝐶 ∈ ℝ* ∧ 𝐶 ≠ -∞) ∧ ((𝐵 +𝑒 𝐷) ∈ ℝ* ∧ (𝐵 +𝑒 𝐷) ≠ -∞)) → ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷)) = (𝐴 +𝑒 (𝐶 +𝑒 (𝐵 +𝑒 𝐷)))) | |
| 28 | 7, 1, 24, 26, 27 | syl112anc 1376 | . 2 ⊢ (𝜑 → ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷)) = (𝐴 +𝑒 (𝐶 +𝑒 (𝐵 +𝑒 𝐷)))) |
| 29 | 6, 23, 28 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 (class class class)co 7369 -∞cmnf 11182 ℝ*cxr 11183 +𝑒 cxad 13046 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-xadd 13049 |
| This theorem is referenced by: xnn0add4d 13240 |
| Copyright terms: Public domain | W3C validator |