MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xadd4d Structured version   Visualization version   GIF version

Theorem xadd4d 12684
Description: Rearrangement of 4 terms in a sum for extended addition, analogous to add4d 10857. (Contributed by Alexander van der Vekens, 21-Dec-2017.)
Hypotheses
Ref Expression
xadd4d.1 (𝜑 → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
xadd4d.2 (𝜑 → (𝐵 ∈ ℝ*𝐵 ≠ -∞))
xadd4d.3 (𝜑 → (𝐶 ∈ ℝ*𝐶 ≠ -∞))
xadd4d.4 (𝜑 → (𝐷 ∈ ℝ*𝐷 ≠ -∞))
Assertion
Ref Expression
xadd4d (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷)))

Proof of Theorem xadd4d
StepHypRef Expression
1 xadd4d.3 . . . 4 (𝜑 → (𝐶 ∈ ℝ*𝐶 ≠ -∞))
2 xadd4d.2 . . . 4 (𝜑 → (𝐵 ∈ ℝ*𝐵 ≠ -∞))
3 xadd4d.4 . . . 4 (𝜑 → (𝐷 ∈ ℝ*𝐷 ≠ -∞))
4 xaddass 12630 . . . 4 (((𝐶 ∈ ℝ*𝐶 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐷 ∈ ℝ*𝐷 ≠ -∞)) → ((𝐶 +𝑒 𝐵) +𝑒 𝐷) = (𝐶 +𝑒 (𝐵 +𝑒 𝐷)))
51, 2, 3, 4syl3anc 1368 . . 3 (𝜑 → ((𝐶 +𝑒 𝐵) +𝑒 𝐷) = (𝐶 +𝑒 (𝐵 +𝑒 𝐷)))
65oveq2d 7151 . 2 (𝜑 → (𝐴 +𝑒 ((𝐶 +𝑒 𝐵) +𝑒 𝐷)) = (𝐴 +𝑒 (𝐶 +𝑒 (𝐵 +𝑒 𝐷))))
7 xadd4d.1 . . . 4 (𝜑 → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
81simpld 498 . . . . 5 (𝜑𝐶 ∈ ℝ*)
93simpld 498 . . . . 5 (𝜑𝐷 ∈ ℝ*)
108, 9xaddcld 12682 . . . 4 (𝜑 → (𝐶 +𝑒 𝐷) ∈ ℝ*)
11 xaddnemnf 12617 . . . . 5 (((𝐶 ∈ ℝ*𝐶 ≠ -∞) ∧ (𝐷 ∈ ℝ*𝐷 ≠ -∞)) → (𝐶 +𝑒 𝐷) ≠ -∞)
121, 3, 11syl2anc 587 . . . 4 (𝜑 → (𝐶 +𝑒 𝐷) ≠ -∞)
13 xaddass 12630 . . . 4 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ ((𝐶 +𝑒 𝐷) ∈ ℝ* ∧ (𝐶 +𝑒 𝐷) ≠ -∞)) → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = (𝐴 +𝑒 (𝐵 +𝑒 (𝐶 +𝑒 𝐷))))
147, 2, 10, 12, 13syl112anc 1371 . . 3 (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = (𝐴 +𝑒 (𝐵 +𝑒 (𝐶 +𝑒 𝐷))))
152simpld 498 . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
16 xaddcom 12621 . . . . . . 7 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 +𝑒 𝐵) = (𝐵 +𝑒 𝐶))
178, 15, 16syl2anc 587 . . . . . 6 (𝜑 → (𝐶 +𝑒 𝐵) = (𝐵 +𝑒 𝐶))
1817oveq1d 7150 . . . . 5 (𝜑 → ((𝐶 +𝑒 𝐵) +𝑒 𝐷) = ((𝐵 +𝑒 𝐶) +𝑒 𝐷))
19 xaddass 12630 . . . . . 6 (((𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞) ∧ (𝐷 ∈ ℝ*𝐷 ≠ -∞)) → ((𝐵 +𝑒 𝐶) +𝑒 𝐷) = (𝐵 +𝑒 (𝐶 +𝑒 𝐷)))
202, 1, 3, 19syl3anc 1368 . . . . 5 (𝜑 → ((𝐵 +𝑒 𝐶) +𝑒 𝐷) = (𝐵 +𝑒 (𝐶 +𝑒 𝐷)))
2118, 20eqtr2d 2834 . . . 4 (𝜑 → (𝐵 +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐶 +𝑒 𝐵) +𝑒 𝐷))
2221oveq2d 7151 . . 3 (𝜑 → (𝐴 +𝑒 (𝐵 +𝑒 (𝐶 +𝑒 𝐷))) = (𝐴 +𝑒 ((𝐶 +𝑒 𝐵) +𝑒 𝐷)))
2314, 22eqtrd 2833 . 2 (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = (𝐴 +𝑒 ((𝐶 +𝑒 𝐵) +𝑒 𝐷)))
2415, 9xaddcld 12682 . . 3 (𝜑 → (𝐵 +𝑒 𝐷) ∈ ℝ*)
25 xaddnemnf 12617 . . . 4 (((𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐷 ∈ ℝ*𝐷 ≠ -∞)) → (𝐵 +𝑒 𝐷) ≠ -∞)
262, 3, 25syl2anc 587 . . 3 (𝜑 → (𝐵 +𝑒 𝐷) ≠ -∞)
27 xaddass 12630 . . 3 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞) ∧ ((𝐵 +𝑒 𝐷) ∈ ℝ* ∧ (𝐵 +𝑒 𝐷) ≠ -∞)) → ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷)) = (𝐴 +𝑒 (𝐶 +𝑒 (𝐵 +𝑒 𝐷))))
287, 1, 24, 26, 27syl112anc 1371 . 2 (𝜑 → ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷)) = (𝐴 +𝑒 (𝐶 +𝑒 (𝐵 +𝑒 𝐷))))
296, 23, 283eqtr4d 2843 1 (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2987  (class class class)co 7135  -∞cmnf 10662  *cxr 10663   +𝑒 cxad 12493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-xadd 12496
This theorem is referenced by:  xnn0add4d  12685
  Copyright terms: Public domain W3C validator