![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xadd4d | Structured version Visualization version GIF version |
Description: Rearrangement of 4 terms in a sum for extended addition, analogous to add4d 11518. (Contributed by Alexander van der Vekens, 21-Dec-2017.) |
Ref | Expression |
---|---|
xadd4d.1 | ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞)) |
xadd4d.2 | ⊢ (𝜑 → (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞)) |
xadd4d.3 | ⊢ (𝜑 → (𝐶 ∈ ℝ* ∧ 𝐶 ≠ -∞)) |
xadd4d.4 | ⊢ (𝜑 → (𝐷 ∈ ℝ* ∧ 𝐷 ≠ -∞)) |
Ref | Expression |
---|---|
xadd4d | ⊢ (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xadd4d.3 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ ℝ* ∧ 𝐶 ≠ -∞)) | |
2 | xadd4d.2 | . . . 4 ⊢ (𝜑 → (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞)) | |
3 | xadd4d.4 | . . . 4 ⊢ (𝜑 → (𝐷 ∈ ℝ* ∧ 𝐷 ≠ -∞)) | |
4 | xaddass 13311 | . . . 4 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐶 ≠ -∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞) ∧ (𝐷 ∈ ℝ* ∧ 𝐷 ≠ -∞)) → ((𝐶 +𝑒 𝐵) +𝑒 𝐷) = (𝐶 +𝑒 (𝐵 +𝑒 𝐷))) | |
5 | 1, 2, 3, 4 | syl3anc 1371 | . . 3 ⊢ (𝜑 → ((𝐶 +𝑒 𝐵) +𝑒 𝐷) = (𝐶 +𝑒 (𝐵 +𝑒 𝐷))) |
6 | 5 | oveq2d 7464 | . 2 ⊢ (𝜑 → (𝐴 +𝑒 ((𝐶 +𝑒 𝐵) +𝑒 𝐷)) = (𝐴 +𝑒 (𝐶 +𝑒 (𝐵 +𝑒 𝐷)))) |
7 | xadd4d.1 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞)) | |
8 | 1 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
9 | 3 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℝ*) |
10 | 8, 9 | xaddcld 13363 | . . . 4 ⊢ (𝜑 → (𝐶 +𝑒 𝐷) ∈ ℝ*) |
11 | xaddnemnf 13298 | . . . . 5 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐶 ≠ -∞) ∧ (𝐷 ∈ ℝ* ∧ 𝐷 ≠ -∞)) → (𝐶 +𝑒 𝐷) ≠ -∞) | |
12 | 1, 3, 11 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝐶 +𝑒 𝐷) ≠ -∞) |
13 | xaddass 13311 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞) ∧ ((𝐶 +𝑒 𝐷) ∈ ℝ* ∧ (𝐶 +𝑒 𝐷) ≠ -∞)) → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = (𝐴 +𝑒 (𝐵 +𝑒 (𝐶 +𝑒 𝐷)))) | |
14 | 7, 2, 10, 12, 13 | syl112anc 1374 | . . 3 ⊢ (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = (𝐴 +𝑒 (𝐵 +𝑒 (𝐶 +𝑒 𝐷)))) |
15 | 2 | simpld 494 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
16 | xaddcom 13302 | . . . . . . 7 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 +𝑒 𝐵) = (𝐵 +𝑒 𝐶)) | |
17 | 8, 15, 16 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → (𝐶 +𝑒 𝐵) = (𝐵 +𝑒 𝐶)) |
18 | 17 | oveq1d 7463 | . . . . 5 ⊢ (𝜑 → ((𝐶 +𝑒 𝐵) +𝑒 𝐷) = ((𝐵 +𝑒 𝐶) +𝑒 𝐷)) |
19 | xaddass 13311 | . . . . . 6 ⊢ (((𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ* ∧ 𝐶 ≠ -∞) ∧ (𝐷 ∈ ℝ* ∧ 𝐷 ≠ -∞)) → ((𝐵 +𝑒 𝐶) +𝑒 𝐷) = (𝐵 +𝑒 (𝐶 +𝑒 𝐷))) | |
20 | 2, 1, 3, 19 | syl3anc 1371 | . . . . 5 ⊢ (𝜑 → ((𝐵 +𝑒 𝐶) +𝑒 𝐷) = (𝐵 +𝑒 (𝐶 +𝑒 𝐷))) |
21 | 18, 20 | eqtr2d 2781 | . . . 4 ⊢ (𝜑 → (𝐵 +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐶 +𝑒 𝐵) +𝑒 𝐷)) |
22 | 21 | oveq2d 7464 | . . 3 ⊢ (𝜑 → (𝐴 +𝑒 (𝐵 +𝑒 (𝐶 +𝑒 𝐷))) = (𝐴 +𝑒 ((𝐶 +𝑒 𝐵) +𝑒 𝐷))) |
23 | 14, 22 | eqtrd 2780 | . 2 ⊢ (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = (𝐴 +𝑒 ((𝐶 +𝑒 𝐵) +𝑒 𝐷))) |
24 | 15, 9 | xaddcld 13363 | . . 3 ⊢ (𝜑 → (𝐵 +𝑒 𝐷) ∈ ℝ*) |
25 | xaddnemnf 13298 | . . . 4 ⊢ (((𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞) ∧ (𝐷 ∈ ℝ* ∧ 𝐷 ≠ -∞)) → (𝐵 +𝑒 𝐷) ≠ -∞) | |
26 | 2, 3, 25 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝐵 +𝑒 𝐷) ≠ -∞) |
27 | xaddass 13311 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ∧ (𝐶 ∈ ℝ* ∧ 𝐶 ≠ -∞) ∧ ((𝐵 +𝑒 𝐷) ∈ ℝ* ∧ (𝐵 +𝑒 𝐷) ≠ -∞)) → ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷)) = (𝐴 +𝑒 (𝐶 +𝑒 (𝐵 +𝑒 𝐷)))) | |
28 | 7, 1, 24, 26, 27 | syl112anc 1374 | . 2 ⊢ (𝜑 → ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷)) = (𝐴 +𝑒 (𝐶 +𝑒 (𝐵 +𝑒 𝐷)))) |
29 | 6, 23, 28 | 3eqtr4d 2790 | 1 ⊢ (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 (class class class)co 7448 -∞cmnf 11322 ℝ*cxr 11323 +𝑒 cxad 13173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-xadd 13176 |
This theorem is referenced by: xnn0add4d 13366 |
Copyright terms: Public domain | W3C validator |