![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xadd4d | Structured version Visualization version GIF version |
Description: Rearrangement of 4 terms in a sum for extended addition, analogous to add4d 11466. (Contributed by Alexander van der Vekens, 21-Dec-2017.) |
Ref | Expression |
---|---|
xadd4d.1 | ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞)) |
xadd4d.2 | ⊢ (𝜑 → (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞)) |
xadd4d.3 | ⊢ (𝜑 → (𝐶 ∈ ℝ* ∧ 𝐶 ≠ -∞)) |
xadd4d.4 | ⊢ (𝜑 → (𝐷 ∈ ℝ* ∧ 𝐷 ≠ -∞)) |
Ref | Expression |
---|---|
xadd4d | ⊢ (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xadd4d.3 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ ℝ* ∧ 𝐶 ≠ -∞)) | |
2 | xadd4d.2 | . . . 4 ⊢ (𝜑 → (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞)) | |
3 | xadd4d.4 | . . . 4 ⊢ (𝜑 → (𝐷 ∈ ℝ* ∧ 𝐷 ≠ -∞)) | |
4 | xaddass 13254 | . . . 4 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐶 ≠ -∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞) ∧ (𝐷 ∈ ℝ* ∧ 𝐷 ≠ -∞)) → ((𝐶 +𝑒 𝐵) +𝑒 𝐷) = (𝐶 +𝑒 (𝐵 +𝑒 𝐷))) | |
5 | 1, 2, 3, 4 | syl3anc 1369 | . . 3 ⊢ (𝜑 → ((𝐶 +𝑒 𝐵) +𝑒 𝐷) = (𝐶 +𝑒 (𝐵 +𝑒 𝐷))) |
6 | 5 | oveq2d 7430 | . 2 ⊢ (𝜑 → (𝐴 +𝑒 ((𝐶 +𝑒 𝐵) +𝑒 𝐷)) = (𝐴 +𝑒 (𝐶 +𝑒 (𝐵 +𝑒 𝐷)))) |
7 | xadd4d.1 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞)) | |
8 | 1 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
9 | 3 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℝ*) |
10 | 8, 9 | xaddcld 13306 | . . . 4 ⊢ (𝜑 → (𝐶 +𝑒 𝐷) ∈ ℝ*) |
11 | xaddnemnf 13241 | . . . . 5 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐶 ≠ -∞) ∧ (𝐷 ∈ ℝ* ∧ 𝐷 ≠ -∞)) → (𝐶 +𝑒 𝐷) ≠ -∞) | |
12 | 1, 3, 11 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝐶 +𝑒 𝐷) ≠ -∞) |
13 | xaddass 13254 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞) ∧ ((𝐶 +𝑒 𝐷) ∈ ℝ* ∧ (𝐶 +𝑒 𝐷) ≠ -∞)) → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = (𝐴 +𝑒 (𝐵 +𝑒 (𝐶 +𝑒 𝐷)))) | |
14 | 7, 2, 10, 12, 13 | syl112anc 1372 | . . 3 ⊢ (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = (𝐴 +𝑒 (𝐵 +𝑒 (𝐶 +𝑒 𝐷)))) |
15 | 2 | simpld 494 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
16 | xaddcom 13245 | . . . . . . 7 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 +𝑒 𝐵) = (𝐵 +𝑒 𝐶)) | |
17 | 8, 15, 16 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → (𝐶 +𝑒 𝐵) = (𝐵 +𝑒 𝐶)) |
18 | 17 | oveq1d 7429 | . . . . 5 ⊢ (𝜑 → ((𝐶 +𝑒 𝐵) +𝑒 𝐷) = ((𝐵 +𝑒 𝐶) +𝑒 𝐷)) |
19 | xaddass 13254 | . . . . . 6 ⊢ (((𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ* ∧ 𝐶 ≠ -∞) ∧ (𝐷 ∈ ℝ* ∧ 𝐷 ≠ -∞)) → ((𝐵 +𝑒 𝐶) +𝑒 𝐷) = (𝐵 +𝑒 (𝐶 +𝑒 𝐷))) | |
20 | 2, 1, 3, 19 | syl3anc 1369 | . . . . 5 ⊢ (𝜑 → ((𝐵 +𝑒 𝐶) +𝑒 𝐷) = (𝐵 +𝑒 (𝐶 +𝑒 𝐷))) |
21 | 18, 20 | eqtr2d 2768 | . . . 4 ⊢ (𝜑 → (𝐵 +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐶 +𝑒 𝐵) +𝑒 𝐷)) |
22 | 21 | oveq2d 7430 | . . 3 ⊢ (𝜑 → (𝐴 +𝑒 (𝐵 +𝑒 (𝐶 +𝑒 𝐷))) = (𝐴 +𝑒 ((𝐶 +𝑒 𝐵) +𝑒 𝐷))) |
23 | 14, 22 | eqtrd 2767 | . 2 ⊢ (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = (𝐴 +𝑒 ((𝐶 +𝑒 𝐵) +𝑒 𝐷))) |
24 | 15, 9 | xaddcld 13306 | . . 3 ⊢ (𝜑 → (𝐵 +𝑒 𝐷) ∈ ℝ*) |
25 | xaddnemnf 13241 | . . . 4 ⊢ (((𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞) ∧ (𝐷 ∈ ℝ* ∧ 𝐷 ≠ -∞)) → (𝐵 +𝑒 𝐷) ≠ -∞) | |
26 | 2, 3, 25 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝐵 +𝑒 𝐷) ≠ -∞) |
27 | xaddass 13254 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ∧ (𝐶 ∈ ℝ* ∧ 𝐶 ≠ -∞) ∧ ((𝐵 +𝑒 𝐷) ∈ ℝ* ∧ (𝐵 +𝑒 𝐷) ≠ -∞)) → ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷)) = (𝐴 +𝑒 (𝐶 +𝑒 (𝐵 +𝑒 𝐷)))) | |
28 | 7, 1, 24, 26, 27 | syl112anc 1372 | . 2 ⊢ (𝜑 → ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷)) = (𝐴 +𝑒 (𝐶 +𝑒 (𝐵 +𝑒 𝐷)))) |
29 | 6, 23, 28 | 3eqtr4d 2777 | 1 ⊢ (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 (class class class)co 7414 -∞cmnf 11270 ℝ*cxr 11271 +𝑒 cxad 13116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7987 df-2nd 7988 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-xadd 13119 |
This theorem is referenced by: xnn0add4d 13309 |
Copyright terms: Public domain | W3C validator |