Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xadd4d | Structured version Visualization version GIF version |
Description: Rearrangement of 4 terms in a sum for extended addition, analogous to add4d 11195. (Contributed by Alexander van der Vekens, 21-Dec-2017.) |
Ref | Expression |
---|---|
xadd4d.1 | ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞)) |
xadd4d.2 | ⊢ (𝜑 → (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞)) |
xadd4d.3 | ⊢ (𝜑 → (𝐶 ∈ ℝ* ∧ 𝐶 ≠ -∞)) |
xadd4d.4 | ⊢ (𝜑 → (𝐷 ∈ ℝ* ∧ 𝐷 ≠ -∞)) |
Ref | Expression |
---|---|
xadd4d | ⊢ (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xadd4d.3 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ ℝ* ∧ 𝐶 ≠ -∞)) | |
2 | xadd4d.2 | . . . 4 ⊢ (𝜑 → (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞)) | |
3 | xadd4d.4 | . . . 4 ⊢ (𝜑 → (𝐷 ∈ ℝ* ∧ 𝐷 ≠ -∞)) | |
4 | xaddass 12974 | . . . 4 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐶 ≠ -∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞) ∧ (𝐷 ∈ ℝ* ∧ 𝐷 ≠ -∞)) → ((𝐶 +𝑒 𝐵) +𝑒 𝐷) = (𝐶 +𝑒 (𝐵 +𝑒 𝐷))) | |
5 | 1, 2, 3, 4 | syl3anc 1370 | . . 3 ⊢ (𝜑 → ((𝐶 +𝑒 𝐵) +𝑒 𝐷) = (𝐶 +𝑒 (𝐵 +𝑒 𝐷))) |
6 | 5 | oveq2d 7285 | . 2 ⊢ (𝜑 → (𝐴 +𝑒 ((𝐶 +𝑒 𝐵) +𝑒 𝐷)) = (𝐴 +𝑒 (𝐶 +𝑒 (𝐵 +𝑒 𝐷)))) |
7 | xadd4d.1 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞)) | |
8 | 1 | simpld 495 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
9 | 3 | simpld 495 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℝ*) |
10 | 8, 9 | xaddcld 13026 | . . . 4 ⊢ (𝜑 → (𝐶 +𝑒 𝐷) ∈ ℝ*) |
11 | xaddnemnf 12961 | . . . . 5 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐶 ≠ -∞) ∧ (𝐷 ∈ ℝ* ∧ 𝐷 ≠ -∞)) → (𝐶 +𝑒 𝐷) ≠ -∞) | |
12 | 1, 3, 11 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐶 +𝑒 𝐷) ≠ -∞) |
13 | xaddass 12974 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞) ∧ ((𝐶 +𝑒 𝐷) ∈ ℝ* ∧ (𝐶 +𝑒 𝐷) ≠ -∞)) → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = (𝐴 +𝑒 (𝐵 +𝑒 (𝐶 +𝑒 𝐷)))) | |
14 | 7, 2, 10, 12, 13 | syl112anc 1373 | . . 3 ⊢ (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = (𝐴 +𝑒 (𝐵 +𝑒 (𝐶 +𝑒 𝐷)))) |
15 | 2 | simpld 495 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
16 | xaddcom 12965 | . . . . . . 7 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 +𝑒 𝐵) = (𝐵 +𝑒 𝐶)) | |
17 | 8, 15, 16 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐶 +𝑒 𝐵) = (𝐵 +𝑒 𝐶)) |
18 | 17 | oveq1d 7284 | . . . . 5 ⊢ (𝜑 → ((𝐶 +𝑒 𝐵) +𝑒 𝐷) = ((𝐵 +𝑒 𝐶) +𝑒 𝐷)) |
19 | xaddass 12974 | . . . . . 6 ⊢ (((𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ* ∧ 𝐶 ≠ -∞) ∧ (𝐷 ∈ ℝ* ∧ 𝐷 ≠ -∞)) → ((𝐵 +𝑒 𝐶) +𝑒 𝐷) = (𝐵 +𝑒 (𝐶 +𝑒 𝐷))) | |
20 | 2, 1, 3, 19 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → ((𝐵 +𝑒 𝐶) +𝑒 𝐷) = (𝐵 +𝑒 (𝐶 +𝑒 𝐷))) |
21 | 18, 20 | eqtr2d 2781 | . . . 4 ⊢ (𝜑 → (𝐵 +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐶 +𝑒 𝐵) +𝑒 𝐷)) |
22 | 21 | oveq2d 7285 | . . 3 ⊢ (𝜑 → (𝐴 +𝑒 (𝐵 +𝑒 (𝐶 +𝑒 𝐷))) = (𝐴 +𝑒 ((𝐶 +𝑒 𝐵) +𝑒 𝐷))) |
23 | 14, 22 | eqtrd 2780 | . 2 ⊢ (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = (𝐴 +𝑒 ((𝐶 +𝑒 𝐵) +𝑒 𝐷))) |
24 | 15, 9 | xaddcld 13026 | . . 3 ⊢ (𝜑 → (𝐵 +𝑒 𝐷) ∈ ℝ*) |
25 | xaddnemnf 12961 | . . . 4 ⊢ (((𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞) ∧ (𝐷 ∈ ℝ* ∧ 𝐷 ≠ -∞)) → (𝐵 +𝑒 𝐷) ≠ -∞) | |
26 | 2, 3, 25 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐵 +𝑒 𝐷) ≠ -∞) |
27 | xaddass 12974 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ∧ (𝐶 ∈ ℝ* ∧ 𝐶 ≠ -∞) ∧ ((𝐵 +𝑒 𝐷) ∈ ℝ* ∧ (𝐵 +𝑒 𝐷) ≠ -∞)) → ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷)) = (𝐴 +𝑒 (𝐶 +𝑒 (𝐵 +𝑒 𝐷)))) | |
28 | 7, 1, 24, 26, 27 | syl112anc 1373 | . 2 ⊢ (𝜑 → ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷)) = (𝐴 +𝑒 (𝐶 +𝑒 (𝐵 +𝑒 𝐷)))) |
29 | 6, 23, 28 | 3eqtr4d 2790 | 1 ⊢ (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 (class class class)co 7269 -∞cmnf 11000 ℝ*cxr 11001 +𝑒 cxad 12837 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10920 ax-resscn 10921 ax-1cn 10922 ax-icn 10923 ax-addcl 10924 ax-addrcl 10925 ax-mulcl 10926 ax-mulrcl 10927 ax-mulcom 10928 ax-addass 10929 ax-mulass 10930 ax-distr 10931 ax-i2m1 10932 ax-1ne0 10933 ax-1rid 10934 ax-rnegex 10935 ax-rrecex 10936 ax-cnre 10937 ax-pre-lttri 10938 ax-pre-lttrn 10939 ax-pre-ltadd 10940 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-ov 7272 df-oprab 7273 df-mpo 7274 df-1st 7818 df-2nd 7819 df-er 8473 df-en 8709 df-dom 8710 df-sdom 8711 df-pnf 11004 df-mnf 11005 df-xr 11006 df-ltxr 11007 df-xadd 12840 |
This theorem is referenced by: xnn0add4d 13029 |
Copyright terms: Public domain | W3C validator |