MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txmetcnp Structured version   Visualization version   GIF version

Theorem txmetcnp 24560
Description: Continuity of a binary operation on metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
metcn.2 𝐽 = (MetOpen‘𝐶)
metcn.4 𝐾 = (MetOpen‘𝐷)
txmetcnp.4 𝐿 = (MetOpen‘𝐸)
Assertion
Ref Expression
txmetcnp (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))))
Distinct variable groups:   𝑣,𝑢,𝑤,𝑧,𝐹   𝑢,𝐽,𝑣,𝑤,𝑧   𝑢,𝐾,𝑣,𝑤,𝑧   𝑢,𝑋,𝑣,𝑤,𝑧   𝑢,𝑌,𝑣,𝑤,𝑧   𝑢,𝑍,𝑣,𝑤,𝑧   𝑢,𝐴,𝑣,𝑤,𝑧   𝑢,𝐶,𝑣,𝑤,𝑧   𝑢,𝐷,𝑣,𝑤,𝑧   𝑢,𝐵,𝑣,𝑤,𝑧   𝑢,𝐸,𝑣,𝑤,𝑧   𝑤,𝐿,𝑧
Allowed substitution hints:   𝐿(𝑣,𝑢)

Proof of Theorem txmetcnp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . 4 (dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷))) = (dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))
2 simpl1 1192 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → 𝐶 ∈ (∞Met‘𝑋))
3 simpl2 1193 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → 𝐷 ∈ (∞Met‘𝑌))
41, 2, 3tmsxps 24549 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷))) ∈ (∞Met‘(𝑋 × 𝑌)))
5 simpl3 1194 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → 𝐸 ∈ (∞Met‘𝑍))
6 opelxpi 5722 . . . 4 ((𝐴𝑋𝐵𝑌) → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌))
76adantl 481 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌))
8 eqid 2737 . . . 4 (MetOpen‘(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))) = (MetOpen‘(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷))))
9 txmetcnp.4 . . . 4 𝐿 = (MetOpen‘𝐸)
108, 9metcnp 24554 . . 3 (((dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷))) ∈ (∞Met‘(𝑋 × 𝑌)) ∧ 𝐸 ∈ (∞Met‘𝑍) ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌)) → (𝐹 ∈ (((MetOpen‘(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑥 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧))))
114, 5, 7, 10syl3anc 1373 . 2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (𝐹 ∈ (((MetOpen‘(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑥 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧))))
12 metcn.2 . . . . . 6 𝐽 = (MetOpen‘𝐶)
13 metcn.4 . . . . . 6 𝐾 = (MetOpen‘𝐷)
141, 2, 3, 12, 13, 8tmsxpsmopn 24550 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (MetOpen‘(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))) = (𝐽 ×t 𝐾))
1514oveq1d 7446 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → ((MetOpen‘(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))) CnP 𝐿) = ((𝐽 ×t 𝐾) CnP 𝐿))
1615fveq1d 6908 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (((MetOpen‘(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))) CnP 𝐿)‘⟨𝐴, 𝐵⟩) = (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩))
1716eleq2d 2827 . 2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (𝐹 ∈ (((MetOpen‘(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ 𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩)))
18 oveq2 7439 . . . . . . . . 9 (𝑥 = ⟨𝑢, 𝑣⟩ → (⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) = (⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩))
1918breq1d 5153 . . . . . . . 8 (𝑥 = ⟨𝑢, 𝑣⟩ → ((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 ↔ (⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) < 𝑤))
20 df-ov 7434 . . . . . . . . . . 11 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2120oveq1i 7441 . . . . . . . . . 10 ((𝐴𝐹𝐵)𝐸(𝐹𝑥)) = ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥))
22 fveq2 6906 . . . . . . . . . . . 12 (𝑥 = ⟨𝑢, 𝑣⟩ → (𝐹𝑥) = (𝐹‘⟨𝑢, 𝑣⟩))
23 df-ov 7434 . . . . . . . . . . . 12 (𝑢𝐹𝑣) = (𝐹‘⟨𝑢, 𝑣⟩)
2422, 23eqtr4di 2795 . . . . . . . . . . 11 (𝑥 = ⟨𝑢, 𝑣⟩ → (𝐹𝑥) = (𝑢𝐹𝑣))
2524oveq2d 7447 . . . . . . . . . 10 (𝑥 = ⟨𝑢, 𝑣⟩ → ((𝐴𝐹𝐵)𝐸(𝐹𝑥)) = ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)))
2621, 25eqtr3id 2791 . . . . . . . . 9 (𝑥 = ⟨𝑢, 𝑣⟩ → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) = ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)))
2726breq1d 5153 . . . . . . . 8 (𝑥 = ⟨𝑢, 𝑣⟩ → (((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧 ↔ ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))
2819, 27imbi12d 344 . . . . . . 7 (𝑥 = ⟨𝑢, 𝑣⟩ → (((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧) ↔ ((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) < 𝑤 → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
2928ralxp 5852 . . . . . 6 (∀𝑥 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧) ↔ ∀𝑢𝑋𝑣𝑌 ((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) < 𝑤 → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))
302ad2antrr 726 . . . . . . . . . . . 12 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → 𝐶 ∈ (∞Met‘𝑋))
313ad2antrr 726 . . . . . . . . . . . 12 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → 𝐷 ∈ (∞Met‘𝑌))
32 simpllr 776 . . . . . . . . . . . . 13 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → (𝐴𝑋𝐵𝑌))
3332simpld 494 . . . . . . . . . . . 12 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → 𝐴𝑋)
3432simprd 495 . . . . . . . . . . . 12 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → 𝐵𝑌)
35 simprrl 781 . . . . . . . . . . . 12 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → 𝑢𝑋)
36 simprrr 782 . . . . . . . . . . . 12 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → 𝑣𝑌)
371, 30, 31, 33, 34, 35, 36tmsxpsval2 24552 . . . . . . . . . . 11 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → (⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) = if((𝐴𝐶𝑢) ≤ (𝐵𝐷𝑣), (𝐵𝐷𝑣), (𝐴𝐶𝑢)))
3837breq1d 5153 . . . . . . . . . 10 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → ((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) < 𝑤 ↔ if((𝐴𝐶𝑢) ≤ (𝐵𝐷𝑣), (𝐵𝐷𝑣), (𝐴𝐶𝑢)) < 𝑤))
39 xmetcl 24341 . . . . . . . . . . . 12 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝑢𝑋) → (𝐴𝐶𝑢) ∈ ℝ*)
4030, 33, 35, 39syl3anc 1373 . . . . . . . . . . 11 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → (𝐴𝐶𝑢) ∈ ℝ*)
41 xmetcl 24341 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑌) ∧ 𝐵𝑌𝑣𝑌) → (𝐵𝐷𝑣) ∈ ℝ*)
4231, 34, 36, 41syl3anc 1373 . . . . . . . . . . 11 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → (𝐵𝐷𝑣) ∈ ℝ*)
43 rpxr 13044 . . . . . . . . . . . 12 (𝑤 ∈ ℝ+𝑤 ∈ ℝ*)
4443ad2antrl 728 . . . . . . . . . . 11 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → 𝑤 ∈ ℝ*)
45 xrmaxlt 13223 . . . . . . . . . . 11 (((𝐴𝐶𝑢) ∈ ℝ* ∧ (𝐵𝐷𝑣) ∈ ℝ*𝑤 ∈ ℝ*) → (if((𝐴𝐶𝑢) ≤ (𝐵𝐷𝑣), (𝐵𝐷𝑣), (𝐴𝐶𝑢)) < 𝑤 ↔ ((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤)))
4640, 42, 44, 45syl3anc 1373 . . . . . . . . . 10 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → (if((𝐴𝐶𝑢) ≤ (𝐵𝐷𝑣), (𝐵𝐷𝑣), (𝐴𝐶𝑢)) < 𝑤 ↔ ((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤)))
4738, 46bitrd 279 . . . . . . . . 9 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → ((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) < 𝑤 ↔ ((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤)))
4847imbi1d 341 . . . . . . . 8 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → (((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) < 𝑤 → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧) ↔ (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
4948anassrs 467 . . . . . . 7 ((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ 𝑤 ∈ ℝ+) ∧ (𝑢𝑋𝑣𝑌)) → (((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) < 𝑤 → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧) ↔ (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
50492ralbidva 3219 . . . . . 6 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ 𝑤 ∈ ℝ+) → (∀𝑢𝑋𝑣𝑌 ((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) < 𝑤 → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧) ↔ ∀𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
5129, 50bitrid 283 . . . . 5 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ 𝑤 ∈ ℝ+) → (∀𝑥 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧) ↔ ∀𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
5251rexbidva 3177 . . . 4 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) → (∃𝑤 ∈ ℝ+𝑥 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧) ↔ ∃𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
5352ralbidv 3178 . . 3 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) → (∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑥 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧) ↔ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
5453pm5.32da 579 . 2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → ((𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑥 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧)) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))))
5511, 17, 543bitr3d 309 1 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wrex 3070  ifcif 4525  cop 4632   class class class wbr 5143   × cxp 5683  wf 6557  cfv 6561  (class class class)co 7431  *cxr 11294   < clt 11295  cle 11296  +crp 13034  distcds 17306   ×s cxps 17551  ∞Metcxmet 21349  MetOpencmopn 21354   CnP ccnp 23233   ×t ctx 23568  toMetSpctms 24329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-icc 13394  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-bl 21359  df-mopn 21360  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cn 23235  df-cnp 23236  df-tx 23570  df-hmeo 23763  df-xms 24330  df-tms 24332
This theorem is referenced by:  txmetcn  24561  cxpcn3  26791
  Copyright terms: Public domain W3C validator