MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txmetcnp Structured version   Visualization version   GIF version

Theorem txmetcnp 24433
Description: Continuity of a binary operation on metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
metcn.2 𝐽 = (MetOpen‘𝐶)
metcn.4 𝐾 = (MetOpen‘𝐷)
txmetcnp.4 𝐿 = (MetOpen‘𝐸)
Assertion
Ref Expression
txmetcnp (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))))
Distinct variable groups:   𝑣,𝑢,𝑤,𝑧,𝐹   𝑢,𝐽,𝑣,𝑤,𝑧   𝑢,𝐾,𝑣,𝑤,𝑧   𝑢,𝑋,𝑣,𝑤,𝑧   𝑢,𝑌,𝑣,𝑤,𝑧   𝑢,𝑍,𝑣,𝑤,𝑧   𝑢,𝐴,𝑣,𝑤,𝑧   𝑢,𝐶,𝑣,𝑤,𝑧   𝑢,𝐷,𝑣,𝑤,𝑧   𝑢,𝐵,𝑣,𝑤,𝑧   𝑢,𝐸,𝑣,𝑤,𝑧   𝑤,𝐿,𝑧
Allowed substitution hints:   𝐿(𝑣,𝑢)

Proof of Theorem txmetcnp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷))) = (dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))
2 simpl1 1192 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → 𝐶 ∈ (∞Met‘𝑋))
3 simpl2 1193 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → 𝐷 ∈ (∞Met‘𝑌))
41, 2, 3tmsxps 24422 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷))) ∈ (∞Met‘(𝑋 × 𝑌)))
5 simpl3 1194 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → 𝐸 ∈ (∞Met‘𝑍))
6 opelxpi 5656 . . . 4 ((𝐴𝑋𝐵𝑌) → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌))
76adantl 481 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌))
8 eqid 2729 . . . 4 (MetOpen‘(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))) = (MetOpen‘(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷))))
9 txmetcnp.4 . . . 4 𝐿 = (MetOpen‘𝐸)
108, 9metcnp 24427 . . 3 (((dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷))) ∈ (∞Met‘(𝑋 × 𝑌)) ∧ 𝐸 ∈ (∞Met‘𝑍) ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌)) → (𝐹 ∈ (((MetOpen‘(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑥 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧))))
114, 5, 7, 10syl3anc 1373 . 2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (𝐹 ∈ (((MetOpen‘(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑥 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧))))
12 metcn.2 . . . . . 6 𝐽 = (MetOpen‘𝐶)
13 metcn.4 . . . . . 6 𝐾 = (MetOpen‘𝐷)
141, 2, 3, 12, 13, 8tmsxpsmopn 24423 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (MetOpen‘(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))) = (𝐽 ×t 𝐾))
1514oveq1d 7364 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → ((MetOpen‘(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))) CnP 𝐿) = ((𝐽 ×t 𝐾) CnP 𝐿))
1615fveq1d 6824 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (((MetOpen‘(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))) CnP 𝐿)‘⟨𝐴, 𝐵⟩) = (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩))
1716eleq2d 2814 . 2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (𝐹 ∈ (((MetOpen‘(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ 𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩)))
18 oveq2 7357 . . . . . . . . 9 (𝑥 = ⟨𝑢, 𝑣⟩ → (⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) = (⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩))
1918breq1d 5102 . . . . . . . 8 (𝑥 = ⟨𝑢, 𝑣⟩ → ((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 ↔ (⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) < 𝑤))
20 df-ov 7352 . . . . . . . . . . 11 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2120oveq1i 7359 . . . . . . . . . 10 ((𝐴𝐹𝐵)𝐸(𝐹𝑥)) = ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥))
22 fveq2 6822 . . . . . . . . . . . 12 (𝑥 = ⟨𝑢, 𝑣⟩ → (𝐹𝑥) = (𝐹‘⟨𝑢, 𝑣⟩))
23 df-ov 7352 . . . . . . . . . . . 12 (𝑢𝐹𝑣) = (𝐹‘⟨𝑢, 𝑣⟩)
2422, 23eqtr4di 2782 . . . . . . . . . . 11 (𝑥 = ⟨𝑢, 𝑣⟩ → (𝐹𝑥) = (𝑢𝐹𝑣))
2524oveq2d 7365 . . . . . . . . . 10 (𝑥 = ⟨𝑢, 𝑣⟩ → ((𝐴𝐹𝐵)𝐸(𝐹𝑥)) = ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)))
2621, 25eqtr3id 2778 . . . . . . . . 9 (𝑥 = ⟨𝑢, 𝑣⟩ → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) = ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)))
2726breq1d 5102 . . . . . . . 8 (𝑥 = ⟨𝑢, 𝑣⟩ → (((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧 ↔ ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))
2819, 27imbi12d 344 . . . . . . 7 (𝑥 = ⟨𝑢, 𝑣⟩ → (((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧) ↔ ((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) < 𝑤 → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
2928ralxp 5784 . . . . . 6 (∀𝑥 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧) ↔ ∀𝑢𝑋𝑣𝑌 ((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) < 𝑤 → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))
302ad2antrr 726 . . . . . . . . . . . 12 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → 𝐶 ∈ (∞Met‘𝑋))
313ad2antrr 726 . . . . . . . . . . . 12 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → 𝐷 ∈ (∞Met‘𝑌))
32 simpllr 775 . . . . . . . . . . . . 13 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → (𝐴𝑋𝐵𝑌))
3332simpld 494 . . . . . . . . . . . 12 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → 𝐴𝑋)
3432simprd 495 . . . . . . . . . . . 12 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → 𝐵𝑌)
35 simprrl 780 . . . . . . . . . . . 12 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → 𝑢𝑋)
36 simprrr 781 . . . . . . . . . . . 12 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → 𝑣𝑌)
371, 30, 31, 33, 34, 35, 36tmsxpsval2 24425 . . . . . . . . . . 11 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → (⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) = if((𝐴𝐶𝑢) ≤ (𝐵𝐷𝑣), (𝐵𝐷𝑣), (𝐴𝐶𝑢)))
3837breq1d 5102 . . . . . . . . . 10 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → ((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) < 𝑤 ↔ if((𝐴𝐶𝑢) ≤ (𝐵𝐷𝑣), (𝐵𝐷𝑣), (𝐴𝐶𝑢)) < 𝑤))
39 xmetcl 24217 . . . . . . . . . . . 12 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝑢𝑋) → (𝐴𝐶𝑢) ∈ ℝ*)
4030, 33, 35, 39syl3anc 1373 . . . . . . . . . . 11 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → (𝐴𝐶𝑢) ∈ ℝ*)
41 xmetcl 24217 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑌) ∧ 𝐵𝑌𝑣𝑌) → (𝐵𝐷𝑣) ∈ ℝ*)
4231, 34, 36, 41syl3anc 1373 . . . . . . . . . . 11 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → (𝐵𝐷𝑣) ∈ ℝ*)
43 rpxr 12903 . . . . . . . . . . . 12 (𝑤 ∈ ℝ+𝑤 ∈ ℝ*)
4443ad2antrl 728 . . . . . . . . . . 11 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → 𝑤 ∈ ℝ*)
45 xrmaxlt 13083 . . . . . . . . . . 11 (((𝐴𝐶𝑢) ∈ ℝ* ∧ (𝐵𝐷𝑣) ∈ ℝ*𝑤 ∈ ℝ*) → (if((𝐴𝐶𝑢) ≤ (𝐵𝐷𝑣), (𝐵𝐷𝑣), (𝐴𝐶𝑢)) < 𝑤 ↔ ((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤)))
4640, 42, 44, 45syl3anc 1373 . . . . . . . . . 10 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → (if((𝐴𝐶𝑢) ≤ (𝐵𝐷𝑣), (𝐵𝐷𝑣), (𝐴𝐶𝑢)) < 𝑤 ↔ ((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤)))
4738, 46bitrd 279 . . . . . . . . 9 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → ((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) < 𝑤 ↔ ((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤)))
4847imbi1d 341 . . . . . . . 8 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → (((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) < 𝑤 → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧) ↔ (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
4948anassrs 467 . . . . . . 7 ((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ 𝑤 ∈ ℝ+) ∧ (𝑢𝑋𝑣𝑌)) → (((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) < 𝑤 → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧) ↔ (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
50492ralbidva 3191 . . . . . 6 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ 𝑤 ∈ ℝ+) → (∀𝑢𝑋𝑣𝑌 ((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) < 𝑤 → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧) ↔ ∀𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
5129, 50bitrid 283 . . . . 5 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ 𝑤 ∈ ℝ+) → (∀𝑥 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧) ↔ ∀𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
5251rexbidva 3151 . . . 4 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) → (∃𝑤 ∈ ℝ+𝑥 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧) ↔ ∃𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
5352ralbidv 3152 . . 3 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) → (∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑥 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧) ↔ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
5453pm5.32da 579 . 2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → ((𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑥 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧)) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))))
5511, 17, 543bitr3d 309 1 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  ifcif 4476  cop 4583   class class class wbr 5092   × cxp 5617  wf 6478  cfv 6482  (class class class)co 7349  *cxr 11148   < clt 11149  cle 11150  +crp 12893  distcds 17170   ×s cxps 17410  ∞Metcxmet 21246  MetOpencmopn 21251   CnP ccnp 23110   ×t ctx 23445  toMetSpctms 24205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-icc 13255  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-bl 21256  df-mopn 21257  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cn 23112  df-cnp 23113  df-tx 23447  df-hmeo 23640  df-xms 24206  df-tms 24208
This theorem is referenced by:  txmetcn  24434  cxpcn3  26656
  Copyright terms: Public domain W3C validator