Step | Hyp | Ref
| Expression |
1 | | eqid 2758 |
. . . 4
⊢
(dist‘((toMetSp‘𝐶) ×s
(toMetSp‘𝐷))) =
(dist‘((toMetSp‘𝐶) ×s
(toMetSp‘𝐷))) |
2 | | simpl1 1188 |
. . . 4
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) → 𝐶 ∈ (∞Met‘𝑋)) |
3 | | simpl2 1189 |
. . . 4
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) → 𝐷 ∈ (∞Met‘𝑌)) |
4 | 1, 2, 3 | tmsxps 23238 |
. . 3
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) → (dist‘((toMetSp‘𝐶) ×s
(toMetSp‘𝐷))) ∈
(∞Met‘(𝑋
× 𝑌))) |
5 | | simpl3 1190 |
. . 3
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) → 𝐸 ∈ (∞Met‘𝑍)) |
6 | | opelxpi 5561 |
. . . 4
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) → 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑌)) |
7 | 6 | adantl 485 |
. . 3
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) → 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑌)) |
8 | | eqid 2758 |
. . . 4
⊢
(MetOpen‘(dist‘((toMetSp‘𝐶) ×s
(toMetSp‘𝐷)))) =
(MetOpen‘(dist‘((toMetSp‘𝐶) ×s
(toMetSp‘𝐷)))) |
9 | | txmetcnp.4 |
. . . 4
⊢ 𝐿 = (MetOpen‘𝐸) |
10 | 8, 9 | metcnp 23243 |
. . 3
⊢
(((dist‘((toMetSp‘𝐶) ×s
(toMetSp‘𝐷))) ∈
(∞Met‘(𝑋
× 𝑌)) ∧ 𝐸 ∈ (∞Met‘𝑍) ∧ 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑌)) → (𝐹 ∈
(((MetOpen‘(dist‘((toMetSp‘𝐶) ×s
(toMetSp‘𝐷)))) CnP
𝐿)‘〈𝐴, 𝐵〉) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+ ∃𝑤 ∈ ℝ+
∀𝑥 ∈ (𝑋 × 𝑌)((〈𝐴, 𝐵〉(dist‘((toMetSp‘𝐶) ×s
(toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘〈𝐴, 𝐵〉)𝐸(𝐹‘𝑥)) < 𝑧)))) |
11 | 4, 5, 7, 10 | syl3anc 1368 |
. 2
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) → (𝐹 ∈
(((MetOpen‘(dist‘((toMetSp‘𝐶) ×s
(toMetSp‘𝐷)))) CnP
𝐿)‘〈𝐴, 𝐵〉) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+ ∃𝑤 ∈ ℝ+
∀𝑥 ∈ (𝑋 × 𝑌)((〈𝐴, 𝐵〉(dist‘((toMetSp‘𝐶) ×s
(toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘〈𝐴, 𝐵〉)𝐸(𝐹‘𝑥)) < 𝑧)))) |
12 | | metcn.2 |
. . . . . 6
⊢ 𝐽 = (MetOpen‘𝐶) |
13 | | metcn.4 |
. . . . . 6
⊢ 𝐾 = (MetOpen‘𝐷) |
14 | 1, 2, 3, 12, 13, 8 | tmsxpsmopn 23239 |
. . . . 5
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) →
(MetOpen‘(dist‘((toMetSp‘𝐶) ×s
(toMetSp‘𝐷)))) =
(𝐽 ×t
𝐾)) |
15 | 14 | oveq1d 7165 |
. . . 4
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) →
((MetOpen‘(dist‘((toMetSp‘𝐶) ×s
(toMetSp‘𝐷)))) CnP
𝐿) = ((𝐽 ×t 𝐾) CnP 𝐿)) |
16 | 15 | fveq1d 6660 |
. . 3
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) →
(((MetOpen‘(dist‘((toMetSp‘𝐶) ×s
(toMetSp‘𝐷)))) CnP
𝐿)‘〈𝐴, 𝐵〉) = (((𝐽 ×t 𝐾) CnP 𝐿)‘〈𝐴, 𝐵〉)) |
17 | 16 | eleq2d 2837 |
. 2
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) → (𝐹 ∈
(((MetOpen‘(dist‘((toMetSp‘𝐶) ×s
(toMetSp‘𝐷)))) CnP
𝐿)‘〈𝐴, 𝐵〉) ↔ 𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘〈𝐴, 𝐵〉))) |
18 | | oveq2 7158 |
. . . . . . . . 9
⊢ (𝑥 = 〈𝑢, 𝑣〉 → (〈𝐴, 𝐵〉(dist‘((toMetSp‘𝐶) ×s
(toMetSp‘𝐷)))𝑥) = (〈𝐴, 𝐵〉(dist‘((toMetSp‘𝐶) ×s
(toMetSp‘𝐷)))〈𝑢, 𝑣〉)) |
19 | 18 | breq1d 5042 |
. . . . . . . 8
⊢ (𝑥 = 〈𝑢, 𝑣〉 → ((〈𝐴, 𝐵〉(dist‘((toMetSp‘𝐶) ×s
(toMetSp‘𝐷)))𝑥) < 𝑤 ↔ (〈𝐴, 𝐵〉(dist‘((toMetSp‘𝐶) ×s
(toMetSp‘𝐷)))〈𝑢, 𝑣〉) < 𝑤)) |
20 | | df-ov 7153 |
. . . . . . . . . . 11
⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) |
21 | 20 | oveq1i 7160 |
. . . . . . . . . 10
⊢ ((𝐴𝐹𝐵)𝐸(𝐹‘𝑥)) = ((𝐹‘〈𝐴, 𝐵〉)𝐸(𝐹‘𝑥)) |
22 | | fveq2 6658 |
. . . . . . . . . . . 12
⊢ (𝑥 = 〈𝑢, 𝑣〉 → (𝐹‘𝑥) = (𝐹‘〈𝑢, 𝑣〉)) |
23 | | df-ov 7153 |
. . . . . . . . . . . 12
⊢ (𝑢𝐹𝑣) = (𝐹‘〈𝑢, 𝑣〉) |
24 | 22, 23 | eqtr4di 2811 |
. . . . . . . . . . 11
⊢ (𝑥 = 〈𝑢, 𝑣〉 → (𝐹‘𝑥) = (𝑢𝐹𝑣)) |
25 | 24 | oveq2d 7166 |
. . . . . . . . . 10
⊢ (𝑥 = 〈𝑢, 𝑣〉 → ((𝐴𝐹𝐵)𝐸(𝐹‘𝑥)) = ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣))) |
26 | 21, 25 | syl5eqr 2807 |
. . . . . . . . 9
⊢ (𝑥 = 〈𝑢, 𝑣〉 → ((𝐹‘〈𝐴, 𝐵〉)𝐸(𝐹‘𝑥)) = ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣))) |
27 | 26 | breq1d 5042 |
. . . . . . . 8
⊢ (𝑥 = 〈𝑢, 𝑣〉 → (((𝐹‘〈𝐴, 𝐵〉)𝐸(𝐹‘𝑥)) < 𝑧 ↔ ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)) |
28 | 19, 27 | imbi12d 348 |
. . . . . . 7
⊢ (𝑥 = 〈𝑢, 𝑣〉 → (((〈𝐴, 𝐵〉(dist‘((toMetSp‘𝐶) ×s
(toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘〈𝐴, 𝐵〉)𝐸(𝐹‘𝑥)) < 𝑧) ↔ ((〈𝐴, 𝐵〉(dist‘((toMetSp‘𝐶) ×s
(toMetSp‘𝐷)))〈𝑢, 𝑣〉) < 𝑤 → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))) |
29 | 28 | ralxp 5681 |
. . . . . 6
⊢
(∀𝑥 ∈
(𝑋 × 𝑌)((〈𝐴, 𝐵〉(dist‘((toMetSp‘𝐶) ×s
(toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘〈𝐴, 𝐵〉)𝐸(𝐹‘𝑥)) < 𝑧) ↔ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 ((〈𝐴, 𝐵〉(dist‘((toMetSp‘𝐶) ×s
(toMetSp‘𝐷)))〈𝑢, 𝑣〉) < 𝑤 → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)) |
30 | 2 | ad2antrr 725 |
. . . . . . . . . . . 12
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌))) → 𝐶 ∈ (∞Met‘𝑋)) |
31 | 3 | ad2antrr 725 |
. . . . . . . . . . . 12
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌))) → 𝐷 ∈ (∞Met‘𝑌)) |
32 | | simpllr 775 |
. . . . . . . . . . . . 13
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌))) → (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) |
33 | 32 | simpld 498 |
. . . . . . . . . . . 12
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌))) → 𝐴 ∈ 𝑋) |
34 | 32 | simprd 499 |
. . . . . . . . . . . 12
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌))) → 𝐵 ∈ 𝑌) |
35 | | simprrl 780 |
. . . . . . . . . . . 12
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌))) → 𝑢 ∈ 𝑋) |
36 | | simprrr 781 |
. . . . . . . . . . . 12
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌))) → 𝑣 ∈ 𝑌) |
37 | 1, 30, 31, 33, 34, 35, 36 | tmsxpsval2 23241 |
. . . . . . . . . . 11
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌))) → (〈𝐴, 𝐵〉(dist‘((toMetSp‘𝐶) ×s
(toMetSp‘𝐷)))〈𝑢, 𝑣〉) = if((𝐴𝐶𝑢) ≤ (𝐵𝐷𝑣), (𝐵𝐷𝑣), (𝐴𝐶𝑢))) |
38 | 37 | breq1d 5042 |
. . . . . . . . . 10
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌))) → ((〈𝐴, 𝐵〉(dist‘((toMetSp‘𝐶) ×s
(toMetSp‘𝐷)))〈𝑢, 𝑣〉) < 𝑤 ↔ if((𝐴𝐶𝑢) ≤ (𝐵𝐷𝑣), (𝐵𝐷𝑣), (𝐴𝐶𝑢)) < 𝑤)) |
39 | | xmetcl 23033 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝑢 ∈ 𝑋) → (𝐴𝐶𝑢) ∈
ℝ*) |
40 | 30, 33, 35, 39 | syl3anc 1368 |
. . . . . . . . . . 11
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌))) → (𝐴𝐶𝑢) ∈
ℝ*) |
41 | | xmetcl 23033 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑌) ∧ 𝐵 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌) → (𝐵𝐷𝑣) ∈
ℝ*) |
42 | 31, 34, 36, 41 | syl3anc 1368 |
. . . . . . . . . . 11
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌))) → (𝐵𝐷𝑣) ∈
ℝ*) |
43 | | rpxr 12439 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ ℝ+
→ 𝑤 ∈
ℝ*) |
44 | 43 | ad2antrl 727 |
. . . . . . . . . . 11
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌))) → 𝑤 ∈ ℝ*) |
45 | | xrmaxlt 12615 |
. . . . . . . . . . 11
⊢ (((𝐴𝐶𝑢) ∈ ℝ* ∧ (𝐵𝐷𝑣) ∈ ℝ* ∧ 𝑤 ∈ ℝ*)
→ (if((𝐴𝐶𝑢) ≤ (𝐵𝐷𝑣), (𝐵𝐷𝑣), (𝐴𝐶𝑢)) < 𝑤 ↔ ((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤))) |
46 | 40, 42, 44, 45 | syl3anc 1368 |
. . . . . . . . . 10
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌))) → (if((𝐴𝐶𝑢) ≤ (𝐵𝐷𝑣), (𝐵𝐷𝑣), (𝐴𝐶𝑢)) < 𝑤 ↔ ((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤))) |
47 | 38, 46 | bitrd 282 |
. . . . . . . . 9
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌))) → ((〈𝐴, 𝐵〉(dist‘((toMetSp‘𝐶) ×s
(toMetSp‘𝐷)))〈𝑢, 𝑣〉) < 𝑤 ↔ ((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤))) |
48 | 47 | imbi1d 345 |
. . . . . . . 8
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌))) → (((〈𝐴, 𝐵〉(dist‘((toMetSp‘𝐶) ×s
(toMetSp‘𝐷)))〈𝑢, 𝑣〉) < 𝑤 → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧) ↔ (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))) |
49 | 48 | anassrs 471 |
. . . . . . 7
⊢
((((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ 𝑤 ∈ ℝ+) ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑌)) → (((〈𝐴, 𝐵〉(dist‘((toMetSp‘𝐶) ×s
(toMetSp‘𝐷)))〈𝑢, 𝑣〉) < 𝑤 → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧) ↔ (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))) |
50 | 49 | 2ralbidva 3127 |
. . . . . 6
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ 𝑤 ∈ ℝ+) →
(∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 ((〈𝐴, 𝐵〉(dist‘((toMetSp‘𝐶) ×s
(toMetSp‘𝐷)))〈𝑢, 𝑣〉) < 𝑤 → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧) ↔ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))) |
51 | 29, 50 | syl5bb 286 |
. . . . 5
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝐸 ∈
(∞Met‘𝑍)) ∧
(𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ 𝑤 ∈ ℝ+) →
(∀𝑥 ∈ (𝑋 × 𝑌)((〈𝐴, 𝐵〉(dist‘((toMetSp‘𝐶) ×s
(toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘〈𝐴, 𝐵〉)𝐸(𝐹‘𝑥)) < 𝑧) ↔ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))) |
52 | 51 | rexbidva 3220 |
. . . 4
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) → (∃𝑤 ∈ ℝ+ ∀𝑥 ∈ (𝑋 × 𝑌)((〈𝐴, 𝐵〉(dist‘((toMetSp‘𝐶) ×s
(toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘〈𝐴, 𝐵〉)𝐸(𝐹‘𝑥)) < 𝑧) ↔ ∃𝑤 ∈ ℝ+ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))) |
53 | 52 | ralbidv 3126 |
. . 3
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) → (∀𝑧 ∈ ℝ+ ∃𝑤 ∈ ℝ+
∀𝑥 ∈ (𝑋 × 𝑌)((〈𝐴, 𝐵〉(dist‘((toMetSp‘𝐶) ×s
(toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘〈𝐴, 𝐵〉)𝐸(𝐹‘𝑥)) < 𝑧) ↔ ∀𝑧 ∈ ℝ+ ∃𝑤 ∈ ℝ+
∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))) |
54 | 53 | pm5.32da 582 |
. 2
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) → ((𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+ ∃𝑤 ∈ ℝ+
∀𝑥 ∈ (𝑋 × 𝑌)((〈𝐴, 𝐵〉(dist‘((toMetSp‘𝐶) ×s
(toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘〈𝐴, 𝐵〉)𝐸(𝐹‘𝑥)) < 𝑧)) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+ ∃𝑤 ∈ ℝ+
∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))) |
55 | 11, 17, 54 | 3bitr3d 312 |
1
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘〈𝐴, 𝐵〉) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+ ∃𝑤 ∈ ℝ+
∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))) |