MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txmetcnp Structured version   Visualization version   GIF version

Theorem txmetcnp 24442
Description: Continuity of a binary operation on metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
metcn.2 𝐽 = (MetOpen‘𝐶)
metcn.4 𝐾 = (MetOpen‘𝐷)
txmetcnp.4 𝐿 = (MetOpen‘𝐸)
Assertion
Ref Expression
txmetcnp (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))))
Distinct variable groups:   𝑣,𝑢,𝑤,𝑧,𝐹   𝑢,𝐽,𝑣,𝑤,𝑧   𝑢,𝐾,𝑣,𝑤,𝑧   𝑢,𝑋,𝑣,𝑤,𝑧   𝑢,𝑌,𝑣,𝑤,𝑧   𝑢,𝑍,𝑣,𝑤,𝑧   𝑢,𝐴,𝑣,𝑤,𝑧   𝑢,𝐶,𝑣,𝑤,𝑧   𝑢,𝐷,𝑣,𝑤,𝑧   𝑢,𝐵,𝑣,𝑤,𝑧   𝑢,𝐸,𝑣,𝑤,𝑧   𝑤,𝐿,𝑧
Allowed substitution hints:   𝐿(𝑣,𝑢)

Proof of Theorem txmetcnp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . 4 (dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷))) = (dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))
2 simpl1 1192 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → 𝐶 ∈ (∞Met‘𝑋))
3 simpl2 1193 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → 𝐷 ∈ (∞Met‘𝑌))
41, 2, 3tmsxps 24431 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷))) ∈ (∞Met‘(𝑋 × 𝑌)))
5 simpl3 1194 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → 𝐸 ∈ (∞Met‘𝑍))
6 opelxpi 5678 . . . 4 ((𝐴𝑋𝐵𝑌) → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌))
76adantl 481 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌))
8 eqid 2730 . . . 4 (MetOpen‘(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))) = (MetOpen‘(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷))))
9 txmetcnp.4 . . . 4 𝐿 = (MetOpen‘𝐸)
108, 9metcnp 24436 . . 3 (((dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷))) ∈ (∞Met‘(𝑋 × 𝑌)) ∧ 𝐸 ∈ (∞Met‘𝑍) ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌)) → (𝐹 ∈ (((MetOpen‘(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑥 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧))))
114, 5, 7, 10syl3anc 1373 . 2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (𝐹 ∈ (((MetOpen‘(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑥 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧))))
12 metcn.2 . . . . . 6 𝐽 = (MetOpen‘𝐶)
13 metcn.4 . . . . . 6 𝐾 = (MetOpen‘𝐷)
141, 2, 3, 12, 13, 8tmsxpsmopn 24432 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (MetOpen‘(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))) = (𝐽 ×t 𝐾))
1514oveq1d 7405 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → ((MetOpen‘(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))) CnP 𝐿) = ((𝐽 ×t 𝐾) CnP 𝐿))
1615fveq1d 6863 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (((MetOpen‘(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))) CnP 𝐿)‘⟨𝐴, 𝐵⟩) = (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩))
1716eleq2d 2815 . 2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (𝐹 ∈ (((MetOpen‘(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ 𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩)))
18 oveq2 7398 . . . . . . . . 9 (𝑥 = ⟨𝑢, 𝑣⟩ → (⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) = (⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩))
1918breq1d 5120 . . . . . . . 8 (𝑥 = ⟨𝑢, 𝑣⟩ → ((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 ↔ (⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) < 𝑤))
20 df-ov 7393 . . . . . . . . . . 11 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2120oveq1i 7400 . . . . . . . . . 10 ((𝐴𝐹𝐵)𝐸(𝐹𝑥)) = ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥))
22 fveq2 6861 . . . . . . . . . . . 12 (𝑥 = ⟨𝑢, 𝑣⟩ → (𝐹𝑥) = (𝐹‘⟨𝑢, 𝑣⟩))
23 df-ov 7393 . . . . . . . . . . . 12 (𝑢𝐹𝑣) = (𝐹‘⟨𝑢, 𝑣⟩)
2422, 23eqtr4di 2783 . . . . . . . . . . 11 (𝑥 = ⟨𝑢, 𝑣⟩ → (𝐹𝑥) = (𝑢𝐹𝑣))
2524oveq2d 7406 . . . . . . . . . 10 (𝑥 = ⟨𝑢, 𝑣⟩ → ((𝐴𝐹𝐵)𝐸(𝐹𝑥)) = ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)))
2621, 25eqtr3id 2779 . . . . . . . . 9 (𝑥 = ⟨𝑢, 𝑣⟩ → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) = ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)))
2726breq1d 5120 . . . . . . . 8 (𝑥 = ⟨𝑢, 𝑣⟩ → (((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧 ↔ ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))
2819, 27imbi12d 344 . . . . . . 7 (𝑥 = ⟨𝑢, 𝑣⟩ → (((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧) ↔ ((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) < 𝑤 → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
2928ralxp 5808 . . . . . 6 (∀𝑥 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧) ↔ ∀𝑢𝑋𝑣𝑌 ((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) < 𝑤 → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))
302ad2antrr 726 . . . . . . . . . . . 12 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → 𝐶 ∈ (∞Met‘𝑋))
313ad2antrr 726 . . . . . . . . . . . 12 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → 𝐷 ∈ (∞Met‘𝑌))
32 simpllr 775 . . . . . . . . . . . . 13 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → (𝐴𝑋𝐵𝑌))
3332simpld 494 . . . . . . . . . . . 12 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → 𝐴𝑋)
3432simprd 495 . . . . . . . . . . . 12 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → 𝐵𝑌)
35 simprrl 780 . . . . . . . . . . . 12 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → 𝑢𝑋)
36 simprrr 781 . . . . . . . . . . . 12 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → 𝑣𝑌)
371, 30, 31, 33, 34, 35, 36tmsxpsval2 24434 . . . . . . . . . . 11 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → (⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) = if((𝐴𝐶𝑢) ≤ (𝐵𝐷𝑣), (𝐵𝐷𝑣), (𝐴𝐶𝑢)))
3837breq1d 5120 . . . . . . . . . 10 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → ((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) < 𝑤 ↔ if((𝐴𝐶𝑢) ≤ (𝐵𝐷𝑣), (𝐵𝐷𝑣), (𝐴𝐶𝑢)) < 𝑤))
39 xmetcl 24226 . . . . . . . . . . . 12 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝑢𝑋) → (𝐴𝐶𝑢) ∈ ℝ*)
4030, 33, 35, 39syl3anc 1373 . . . . . . . . . . 11 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → (𝐴𝐶𝑢) ∈ ℝ*)
41 xmetcl 24226 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑌) ∧ 𝐵𝑌𝑣𝑌) → (𝐵𝐷𝑣) ∈ ℝ*)
4231, 34, 36, 41syl3anc 1373 . . . . . . . . . . 11 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → (𝐵𝐷𝑣) ∈ ℝ*)
43 rpxr 12968 . . . . . . . . . . . 12 (𝑤 ∈ ℝ+𝑤 ∈ ℝ*)
4443ad2antrl 728 . . . . . . . . . . 11 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → 𝑤 ∈ ℝ*)
45 xrmaxlt 13148 . . . . . . . . . . 11 (((𝐴𝐶𝑢) ∈ ℝ* ∧ (𝐵𝐷𝑣) ∈ ℝ*𝑤 ∈ ℝ*) → (if((𝐴𝐶𝑢) ≤ (𝐵𝐷𝑣), (𝐵𝐷𝑣), (𝐴𝐶𝑢)) < 𝑤 ↔ ((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤)))
4640, 42, 44, 45syl3anc 1373 . . . . . . . . . 10 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → (if((𝐴𝐶𝑢) ≤ (𝐵𝐷𝑣), (𝐵𝐷𝑣), (𝐴𝐶𝑢)) < 𝑤 ↔ ((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤)))
4738, 46bitrd 279 . . . . . . . . 9 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → ((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) < 𝑤 ↔ ((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤)))
4847imbi1d 341 . . . . . . . 8 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ (𝑤 ∈ ℝ+ ∧ (𝑢𝑋𝑣𝑌))) → (((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) < 𝑤 → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧) ↔ (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
4948anassrs 467 . . . . . . 7 ((((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ 𝑤 ∈ ℝ+) ∧ (𝑢𝑋𝑣𝑌)) → (((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) < 𝑤 → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧) ↔ (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
50492ralbidva 3200 . . . . . 6 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ 𝑤 ∈ ℝ+) → (∀𝑢𝑋𝑣𝑌 ((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))⟨𝑢, 𝑣⟩) < 𝑤 → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧) ↔ ∀𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
5129, 50bitrid 283 . . . . 5 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) ∧ 𝑤 ∈ ℝ+) → (∀𝑥 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧) ↔ ∀𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
5251rexbidva 3156 . . . 4 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) → (∃𝑤 ∈ ℝ+𝑥 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧) ↔ ∃𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
5352ralbidv 3157 . . 3 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) ∧ 𝐹:(𝑋 × 𝑌)⟶𝑍) → (∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑥 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧) ↔ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))
5453pm5.32da 579 . 2 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → ((𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑥 ∈ (𝑋 × 𝑌)((⟨𝐴, 𝐵⟩(dist‘((toMetSp‘𝐶) ×s (toMetSp‘𝐷)))𝑥) < 𝑤 → ((𝐹‘⟨𝐴, 𝐵⟩)𝐸(𝐹𝑥)) < 𝑧)) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))))
5511, 17, 543bitr3d 309 1 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  ifcif 4491  cop 4598   class class class wbr 5110   × cxp 5639  wf 6510  cfv 6514  (class class class)co 7390  *cxr 11214   < clt 11215  cle 11216  +crp 12958  distcds 17236   ×s cxps 17476  ∞Metcxmet 21256  MetOpencmopn 21261   CnP ccnp 23119   ×t ctx 23454  toMetSpctms 24214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-icc 13320  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-bl 21266  df-mopn 21267  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cn 23121  df-cnp 23122  df-tx 23456  df-hmeo 23649  df-xms 24215  df-tms 24217
This theorem is referenced by:  txmetcn  24443  cxpcn3  26665
  Copyright terms: Public domain W3C validator