MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  stdbdmopn Structured version   Visualization version   GIF version

Theorem stdbdmopn 24552
Description: The standard bounded metric corresponding to 𝐶 generates the same topology as 𝐶. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
stdbdmet.1 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅))
stdbdmopn.2 𝐽 = (MetOpen‘𝐶)
Assertion
Ref Expression
stdbdmopn ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐽 = (MetOpen‘𝐷))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝐽(𝑥,𝑦)

Proof of Theorem stdbdmopn
Dummy variables 𝑟 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpxr 13066 . . . . . . . 8 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
21ad2antll 728 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ*)
3 simpl2 1192 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑅 ∈ ℝ*)
42, 3ifcld 4594 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ*)
5 rpre 13065 . . . . . . 7 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
65ad2antll 728 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ)
7 rpgt0 13069 . . . . . . . . 9 (𝑟 ∈ ℝ+ → 0 < 𝑟)
87ad2antll 728 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 < 𝑟)
9 simpl3 1193 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 < 𝑅)
10 breq2 5170 . . . . . . . . 9 (𝑟 = if(𝑟𝑅, 𝑟, 𝑅) → (0 < 𝑟 ↔ 0 < if(𝑟𝑅, 𝑟, 𝑅)))
11 breq2 5170 . . . . . . . . 9 (𝑅 = if(𝑟𝑅, 𝑟, 𝑅) → (0 < 𝑅 ↔ 0 < if(𝑟𝑅, 𝑟, 𝑅)))
1210, 11ifboth 4587 . . . . . . . 8 ((0 < 𝑟 ∧ 0 < 𝑅) → 0 < if(𝑟𝑅, 𝑟, 𝑅))
138, 9, 12syl2anc 583 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 < if(𝑟𝑅, 𝑟, 𝑅))
14 0xr 11337 . . . . . . . 8 0 ∈ ℝ*
15 xrltle 13211 . . . . . . . 8 ((0 ∈ ℝ* ∧ if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ*) → (0 < if(𝑟𝑅, 𝑟, 𝑅) → 0 ≤ if(𝑟𝑅, 𝑟, 𝑅)))
1614, 4, 15sylancr 586 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → (0 < if(𝑟𝑅, 𝑟, 𝑅) → 0 ≤ if(𝑟𝑅, 𝑟, 𝑅)))
1713, 16mpd 15 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 ≤ if(𝑟𝑅, 𝑟, 𝑅))
18 xrmin1 13239 . . . . . . 7 ((𝑟 ∈ ℝ*𝑅 ∈ ℝ*) → if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑟)
192, 3, 18syl2anc 583 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑟)
20 xrrege0 13236 . . . . . 6 (((if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ*𝑟 ∈ ℝ) ∧ (0 ≤ if(𝑟𝑅, 𝑟, 𝑅) ∧ if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑟)) → if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ)
214, 6, 17, 19, 20syl22anc 838 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ)
2221, 13elrpd 13096 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ+)
23 simprl 770 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑧𝑋)
24 xrmin2 13240 . . . . . . . 8 ((𝑟 ∈ ℝ*𝑅 ∈ ℝ*) → if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑅)
252, 3, 24syl2anc 583 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑅)
2623, 4, 253jca 1128 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → (𝑧𝑋 ∧ if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ* ∧ if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑅))
27 stdbdmet.1 . . . . . . 7 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅))
2827stdbdbl 24551 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋 ∧ if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ* ∧ if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑅)) → (𝑧(ball‘𝐷)if(𝑟𝑅, 𝑟, 𝑅)) = (𝑧(ball‘𝐶)if(𝑟𝑅, 𝑟, 𝑅)))
2926, 28syldan 590 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → (𝑧(ball‘𝐷)if(𝑟𝑅, 𝑟, 𝑅)) = (𝑧(ball‘𝐶)if(𝑟𝑅, 𝑟, 𝑅)))
3029eqcomd 2746 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → (𝑧(ball‘𝐶)if(𝑟𝑅, 𝑟, 𝑅)) = (𝑧(ball‘𝐷)if(𝑟𝑅, 𝑟, 𝑅)))
31 breq1 5169 . . . . . 6 (𝑠 = if(𝑟𝑅, 𝑟, 𝑅) → (𝑠𝑟 ↔ if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑟))
32 oveq2 7456 . . . . . . 7 (𝑠 = if(𝑟𝑅, 𝑟, 𝑅) → (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐶)if(𝑟𝑅, 𝑟, 𝑅)))
33 oveq2 7456 . . . . . . 7 (𝑠 = if(𝑟𝑅, 𝑟, 𝑅) → (𝑧(ball‘𝐷)𝑠) = (𝑧(ball‘𝐷)if(𝑟𝑅, 𝑟, 𝑅)))
3432, 33eqeq12d 2756 . . . . . 6 (𝑠 = if(𝑟𝑅, 𝑟, 𝑅) → ((𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠) ↔ (𝑧(ball‘𝐶)if(𝑟𝑅, 𝑟, 𝑅)) = (𝑧(ball‘𝐷)if(𝑟𝑅, 𝑟, 𝑅))))
3531, 34anbi12d 631 . . . . 5 (𝑠 = if(𝑟𝑅, 𝑟, 𝑅) → ((𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)) ↔ (if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑟 ∧ (𝑧(ball‘𝐶)if(𝑟𝑅, 𝑟, 𝑅)) = (𝑧(ball‘𝐷)if(𝑟𝑅, 𝑟, 𝑅)))))
3635rspcev 3635 . . . 4 ((if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ+ ∧ (if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑟 ∧ (𝑧(ball‘𝐶)if(𝑟𝑅, 𝑟, 𝑅)) = (𝑧(ball‘𝐷)if(𝑟𝑅, 𝑟, 𝑅)))) → ∃𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)))
3722, 19, 30, 36syl12anc 836 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → ∃𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)))
3837ralrimivva 3208 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → ∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)))
39 simp1 1136 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐶 ∈ (∞Met‘𝑋))
4027stdbdxmet 24549 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐷 ∈ (∞Met‘𝑋))
41 stdbdmopn.2 . . . 4 𝐽 = (MetOpen‘𝐶)
42 eqid 2740 . . . 4 (MetOpen‘𝐷) = (MetOpen‘𝐷)
4341, 42metequiv2 24544 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)) → 𝐽 = (MetOpen‘𝐷)))
4439, 40, 43syl2anc 583 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → (∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)) → 𝐽 = (MetOpen‘𝐷)))
4538, 44mpd 15 1 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐽 = (MetOpen‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  ifcif 4548   class class class wbr 5166  cfv 6573  (class class class)co 7448  cmpo 7450  cr 11183  0cc0 11184  *cxr 11323   < clt 11324  cle 11325  +crp 13057  ∞Metcxmet 21372  ballcbl 21374  MetOpencmopn 21377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-icc 13414  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-bl 21382  df-mopn 21383  df-bases 22974
This theorem is referenced by:  mopnex  24553  xlebnum  25016
  Copyright terms: Public domain W3C validator