MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  stdbdmopn Structured version   Visualization version   GIF version

Theorem stdbdmopn 24406
Description: The standard bounded metric corresponding to 𝐶 generates the same topology as 𝐶. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
stdbdmet.1 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅))
stdbdmopn.2 𝐽 = (MetOpen‘𝐶)
Assertion
Ref Expression
stdbdmopn ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐽 = (MetOpen‘𝐷))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝐽(𝑥,𝑦)

Proof of Theorem stdbdmopn
Dummy variables 𝑟 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpxr 12961 . . . . . . . 8 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
21ad2antll 729 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ*)
3 simpl2 1193 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑅 ∈ ℝ*)
42, 3ifcld 4535 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ*)
5 rpre 12960 . . . . . . 7 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
65ad2antll 729 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ)
7 rpgt0 12964 . . . . . . . . 9 (𝑟 ∈ ℝ+ → 0 < 𝑟)
87ad2antll 729 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 < 𝑟)
9 simpl3 1194 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 < 𝑅)
10 breq2 5111 . . . . . . . . 9 (𝑟 = if(𝑟𝑅, 𝑟, 𝑅) → (0 < 𝑟 ↔ 0 < if(𝑟𝑅, 𝑟, 𝑅)))
11 breq2 5111 . . . . . . . . 9 (𝑅 = if(𝑟𝑅, 𝑟, 𝑅) → (0 < 𝑅 ↔ 0 < if(𝑟𝑅, 𝑟, 𝑅)))
1210, 11ifboth 4528 . . . . . . . 8 ((0 < 𝑟 ∧ 0 < 𝑅) → 0 < if(𝑟𝑅, 𝑟, 𝑅))
138, 9, 12syl2anc 584 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 < if(𝑟𝑅, 𝑟, 𝑅))
14 0xr 11221 . . . . . . . 8 0 ∈ ℝ*
15 xrltle 13109 . . . . . . . 8 ((0 ∈ ℝ* ∧ if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ*) → (0 < if(𝑟𝑅, 𝑟, 𝑅) → 0 ≤ if(𝑟𝑅, 𝑟, 𝑅)))
1614, 4, 15sylancr 587 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → (0 < if(𝑟𝑅, 𝑟, 𝑅) → 0 ≤ if(𝑟𝑅, 𝑟, 𝑅)))
1713, 16mpd 15 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 ≤ if(𝑟𝑅, 𝑟, 𝑅))
18 xrmin1 13137 . . . . . . 7 ((𝑟 ∈ ℝ*𝑅 ∈ ℝ*) → if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑟)
192, 3, 18syl2anc 584 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑟)
20 xrrege0 13134 . . . . . 6 (((if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ*𝑟 ∈ ℝ) ∧ (0 ≤ if(𝑟𝑅, 𝑟, 𝑅) ∧ if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑟)) → if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ)
214, 6, 17, 19, 20syl22anc 838 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ)
2221, 13elrpd 12992 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ+)
23 simprl 770 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑧𝑋)
24 xrmin2 13138 . . . . . . . 8 ((𝑟 ∈ ℝ*𝑅 ∈ ℝ*) → if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑅)
252, 3, 24syl2anc 584 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑅)
2623, 4, 253jca 1128 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → (𝑧𝑋 ∧ if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ* ∧ if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑅))
27 stdbdmet.1 . . . . . . 7 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅))
2827stdbdbl 24405 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋 ∧ if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ* ∧ if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑅)) → (𝑧(ball‘𝐷)if(𝑟𝑅, 𝑟, 𝑅)) = (𝑧(ball‘𝐶)if(𝑟𝑅, 𝑟, 𝑅)))
2926, 28syldan 591 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → (𝑧(ball‘𝐷)if(𝑟𝑅, 𝑟, 𝑅)) = (𝑧(ball‘𝐶)if(𝑟𝑅, 𝑟, 𝑅)))
3029eqcomd 2735 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → (𝑧(ball‘𝐶)if(𝑟𝑅, 𝑟, 𝑅)) = (𝑧(ball‘𝐷)if(𝑟𝑅, 𝑟, 𝑅)))
31 breq1 5110 . . . . . 6 (𝑠 = if(𝑟𝑅, 𝑟, 𝑅) → (𝑠𝑟 ↔ if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑟))
32 oveq2 7395 . . . . . . 7 (𝑠 = if(𝑟𝑅, 𝑟, 𝑅) → (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐶)if(𝑟𝑅, 𝑟, 𝑅)))
33 oveq2 7395 . . . . . . 7 (𝑠 = if(𝑟𝑅, 𝑟, 𝑅) → (𝑧(ball‘𝐷)𝑠) = (𝑧(ball‘𝐷)if(𝑟𝑅, 𝑟, 𝑅)))
3432, 33eqeq12d 2745 . . . . . 6 (𝑠 = if(𝑟𝑅, 𝑟, 𝑅) → ((𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠) ↔ (𝑧(ball‘𝐶)if(𝑟𝑅, 𝑟, 𝑅)) = (𝑧(ball‘𝐷)if(𝑟𝑅, 𝑟, 𝑅))))
3531, 34anbi12d 632 . . . . 5 (𝑠 = if(𝑟𝑅, 𝑟, 𝑅) → ((𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)) ↔ (if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑟 ∧ (𝑧(ball‘𝐶)if(𝑟𝑅, 𝑟, 𝑅)) = (𝑧(ball‘𝐷)if(𝑟𝑅, 𝑟, 𝑅)))))
3635rspcev 3588 . . . 4 ((if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ+ ∧ (if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑟 ∧ (𝑧(ball‘𝐶)if(𝑟𝑅, 𝑟, 𝑅)) = (𝑧(ball‘𝐷)if(𝑟𝑅, 𝑟, 𝑅)))) → ∃𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)))
3722, 19, 30, 36syl12anc 836 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → ∃𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)))
3837ralrimivva 3180 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → ∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)))
39 simp1 1136 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐶 ∈ (∞Met‘𝑋))
4027stdbdxmet 24403 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐷 ∈ (∞Met‘𝑋))
41 stdbdmopn.2 . . . 4 𝐽 = (MetOpen‘𝐶)
42 eqid 2729 . . . 4 (MetOpen‘𝐷) = (MetOpen‘𝐷)
4341, 42metequiv2 24398 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)) → 𝐽 = (MetOpen‘𝐷)))
4439, 40, 43syl2anc 584 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → (∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)) → 𝐽 = (MetOpen‘𝐷)))
4538, 44mpd 15 1 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐽 = (MetOpen‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  ifcif 4488   class class class wbr 5107  cfv 6511  (class class class)co 7387  cmpo 7389  cr 11067  0cc0 11068  *cxr 11207   < clt 11208  cle 11209  +crp 12951  ∞Metcxmet 21249  ballcbl 21251  MetOpencmopn 21254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-icc 13313  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-bl 21259  df-mopn 21260  df-bases 22833
This theorem is referenced by:  mopnex  24407  xlebnum  24864
  Copyright terms: Public domain W3C validator