MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  stdbdmopn Structured version   Visualization version   GIF version

Theorem stdbdmopn 23388
Description: The standard bounded metric corresponding to 𝐶 generates the same topology as 𝐶. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
stdbdmet.1 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅))
stdbdmopn.2 𝐽 = (MetOpen‘𝐶)
Assertion
Ref Expression
stdbdmopn ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐽 = (MetOpen‘𝐷))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝐽(𝑥,𝑦)

Proof of Theorem stdbdmopn
Dummy variables 𝑟 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpxr 12578 . . . . . . . 8 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
21ad2antll 729 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ*)
3 simpl2 1194 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑅 ∈ ℝ*)
42, 3ifcld 4475 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ*)
5 rpre 12577 . . . . . . 7 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
65ad2antll 729 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ)
7 rpgt0 12581 . . . . . . . . 9 (𝑟 ∈ ℝ+ → 0 < 𝑟)
87ad2antll 729 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 < 𝑟)
9 simpl3 1195 . . . . . . . 8 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 < 𝑅)
10 breq2 5047 . . . . . . . . 9 (𝑟 = if(𝑟𝑅, 𝑟, 𝑅) → (0 < 𝑟 ↔ 0 < if(𝑟𝑅, 𝑟, 𝑅)))
11 breq2 5047 . . . . . . . . 9 (𝑅 = if(𝑟𝑅, 𝑟, 𝑅) → (0 < 𝑅 ↔ 0 < if(𝑟𝑅, 𝑟, 𝑅)))
1210, 11ifboth 4468 . . . . . . . 8 ((0 < 𝑟 ∧ 0 < 𝑅) → 0 < if(𝑟𝑅, 𝑟, 𝑅))
138, 9, 12syl2anc 587 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 < if(𝑟𝑅, 𝑟, 𝑅))
14 0xr 10863 . . . . . . . 8 0 ∈ ℝ*
15 xrltle 12722 . . . . . . . 8 ((0 ∈ ℝ* ∧ if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ*) → (0 < if(𝑟𝑅, 𝑟, 𝑅) → 0 ≤ if(𝑟𝑅, 𝑟, 𝑅)))
1614, 4, 15sylancr 590 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → (0 < if(𝑟𝑅, 𝑟, 𝑅) → 0 ≤ if(𝑟𝑅, 𝑟, 𝑅)))
1713, 16mpd 15 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 0 ≤ if(𝑟𝑅, 𝑟, 𝑅))
18 xrmin1 12750 . . . . . . 7 ((𝑟 ∈ ℝ*𝑅 ∈ ℝ*) → if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑟)
192, 3, 18syl2anc 587 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑟)
20 xrrege0 12747 . . . . . 6 (((if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ*𝑟 ∈ ℝ) ∧ (0 ≤ if(𝑟𝑅, 𝑟, 𝑅) ∧ if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑟)) → if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ)
214, 6, 17, 19, 20syl22anc 839 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ)
2221, 13elrpd 12608 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ+)
23 simprl 771 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → 𝑧𝑋)
24 xrmin2 12751 . . . . . . . 8 ((𝑟 ∈ ℝ*𝑅 ∈ ℝ*) → if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑅)
252, 3, 24syl2anc 587 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑅)
2623, 4, 253jca 1130 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → (𝑧𝑋 ∧ if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ* ∧ if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑅))
27 stdbdmet.1 . . . . . . 7 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅))
2827stdbdbl 23387 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋 ∧ if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ* ∧ if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑅)) → (𝑧(ball‘𝐷)if(𝑟𝑅, 𝑟, 𝑅)) = (𝑧(ball‘𝐶)if(𝑟𝑅, 𝑟, 𝑅)))
2926, 28syldan 594 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → (𝑧(ball‘𝐷)if(𝑟𝑅, 𝑟, 𝑅)) = (𝑧(ball‘𝐶)if(𝑟𝑅, 𝑟, 𝑅)))
3029eqcomd 2740 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → (𝑧(ball‘𝐶)if(𝑟𝑅, 𝑟, 𝑅)) = (𝑧(ball‘𝐷)if(𝑟𝑅, 𝑟, 𝑅)))
31 breq1 5046 . . . . . 6 (𝑠 = if(𝑟𝑅, 𝑟, 𝑅) → (𝑠𝑟 ↔ if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑟))
32 oveq2 7210 . . . . . . 7 (𝑠 = if(𝑟𝑅, 𝑟, 𝑅) → (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐶)if(𝑟𝑅, 𝑟, 𝑅)))
33 oveq2 7210 . . . . . . 7 (𝑠 = if(𝑟𝑅, 𝑟, 𝑅) → (𝑧(ball‘𝐷)𝑠) = (𝑧(ball‘𝐷)if(𝑟𝑅, 𝑟, 𝑅)))
3432, 33eqeq12d 2750 . . . . . 6 (𝑠 = if(𝑟𝑅, 𝑟, 𝑅) → ((𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠) ↔ (𝑧(ball‘𝐶)if(𝑟𝑅, 𝑟, 𝑅)) = (𝑧(ball‘𝐷)if(𝑟𝑅, 𝑟, 𝑅))))
3531, 34anbi12d 634 . . . . 5 (𝑠 = if(𝑟𝑅, 𝑟, 𝑅) → ((𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)) ↔ (if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑟 ∧ (𝑧(ball‘𝐶)if(𝑟𝑅, 𝑟, 𝑅)) = (𝑧(ball‘𝐷)if(𝑟𝑅, 𝑟, 𝑅)))))
3635rspcev 3530 . . . 4 ((if(𝑟𝑅, 𝑟, 𝑅) ∈ ℝ+ ∧ (if(𝑟𝑅, 𝑟, 𝑅) ≤ 𝑟 ∧ (𝑧(ball‘𝐶)if(𝑟𝑅, 𝑟, 𝑅)) = (𝑧(ball‘𝐷)if(𝑟𝑅, 𝑟, 𝑅)))) → ∃𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)))
3722, 19, 30, 36syl12anc 837 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) ∧ (𝑧𝑋𝑟 ∈ ℝ+)) → ∃𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)))
3837ralrimivva 3105 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → ∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)))
39 simp1 1138 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐶 ∈ (∞Met‘𝑋))
4027stdbdxmet 23385 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐷 ∈ (∞Met‘𝑋))
41 stdbdmopn.2 . . . 4 𝐽 = (MetOpen‘𝐶)
42 eqid 2734 . . . 4 (MetOpen‘𝐷) = (MetOpen‘𝐷)
4341, 42metequiv2 23380 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)) → 𝐽 = (MetOpen‘𝐷)))
4439, 40, 43syl2anc 587 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → (∀𝑧𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)) → 𝐽 = (MetOpen‘𝐷)))
4538, 44mpd 15 1 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 < 𝑅) → 𝐽 = (MetOpen‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3054  wrex 3055  ifcif 4429   class class class wbr 5043  cfv 6369  (class class class)co 7202  cmpo 7204  cr 10711  0cc0 10712  *cxr 10849   < clt 10850  cle 10851  +crp 12569  ∞Metcxmet 20320  ballcbl 20322  MetOpencmopn 20325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-er 8380  df-map 8499  df-en 8616  df-dom 8617  df-sdom 8618  df-sup 9047  df-inf 9048  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-n0 12074  df-z 12160  df-uz 12422  df-q 12528  df-rp 12570  df-xneg 12687  df-xadd 12688  df-xmul 12689  df-icc 12925  df-topgen 16920  df-psmet 20327  df-xmet 20328  df-bl 20330  df-mopn 20331  df-bases 21815
This theorem is referenced by:  mopnex  23389  xlebnum  23834
  Copyright terms: Public domain W3C validator