Step | Hyp | Ref
| Expression |
1 | | rpxr 12785 |
. . . . . . . 8
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ*) |
2 | 1 | ad2antll 727 |
. . . . . . 7
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+)) → 𝑟 ∈
ℝ*) |
3 | | simpl2 1192 |
. . . . . . 7
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+)) → 𝑅 ∈
ℝ*) |
4 | 2, 3 | ifcld 4511 |
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+)) → if(𝑟 ≤ 𝑅, 𝑟, 𝑅) ∈
ℝ*) |
5 | | rpre 12784 |
. . . . . . 7
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ) |
6 | 5 | ad2antll 727 |
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+)) → 𝑟 ∈
ℝ) |
7 | | rpgt0 12788 |
. . . . . . . . 9
⊢ (𝑟 ∈ ℝ+
→ 0 < 𝑟) |
8 | 7 | ad2antll 727 |
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+)) → 0 <
𝑟) |
9 | | simpl3 1193 |
. . . . . . . 8
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+)) → 0 <
𝑅) |
10 | | breq2 5085 |
. . . . . . . . 9
⊢ (𝑟 = if(𝑟 ≤ 𝑅, 𝑟, 𝑅) → (0 < 𝑟 ↔ 0 < if(𝑟 ≤ 𝑅, 𝑟, 𝑅))) |
11 | | breq2 5085 |
. . . . . . . . 9
⊢ (𝑅 = if(𝑟 ≤ 𝑅, 𝑟, 𝑅) → (0 < 𝑅 ↔ 0 < if(𝑟 ≤ 𝑅, 𝑟, 𝑅))) |
12 | 10, 11 | ifboth 4504 |
. . . . . . . 8
⊢ ((0 <
𝑟 ∧ 0 < 𝑅) → 0 < if(𝑟 ≤ 𝑅, 𝑟, 𝑅)) |
13 | 8, 9, 12 | syl2anc 585 |
. . . . . . 7
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+)) → 0 <
if(𝑟 ≤ 𝑅, 𝑟, 𝑅)) |
14 | | 0xr 11068 |
. . . . . . . 8
⊢ 0 ∈
ℝ* |
15 | | xrltle 12929 |
. . . . . . . 8
⊢ ((0
∈ ℝ* ∧ if(𝑟 ≤ 𝑅, 𝑟, 𝑅) ∈ ℝ*) → (0 <
if(𝑟 ≤ 𝑅, 𝑟, 𝑅) → 0 ≤ if(𝑟 ≤ 𝑅, 𝑟, 𝑅))) |
16 | 14, 4, 15 | sylancr 588 |
. . . . . . 7
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+)) → (0 <
if(𝑟 ≤ 𝑅, 𝑟, 𝑅) → 0 ≤ if(𝑟 ≤ 𝑅, 𝑟, 𝑅))) |
17 | 13, 16 | mpd 15 |
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+)) → 0 ≤
if(𝑟 ≤ 𝑅, 𝑟, 𝑅)) |
18 | | xrmin1 12957 |
. . . . . . 7
⊢ ((𝑟 ∈ ℝ*
∧ 𝑅 ∈
ℝ*) → if(𝑟 ≤ 𝑅, 𝑟, 𝑅) ≤ 𝑟) |
19 | 2, 3, 18 | syl2anc 585 |
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+)) → if(𝑟 ≤ 𝑅, 𝑟, 𝑅) ≤ 𝑟) |
20 | | xrrege0 12954 |
. . . . . 6
⊢
(((if(𝑟 ≤ 𝑅, 𝑟, 𝑅) ∈ ℝ* ∧ 𝑟 ∈ ℝ) ∧ (0 ≤
if(𝑟 ≤ 𝑅, 𝑟, 𝑅) ∧ if(𝑟 ≤ 𝑅, 𝑟, 𝑅) ≤ 𝑟)) → if(𝑟 ≤ 𝑅, 𝑟, 𝑅) ∈ ℝ) |
21 | 4, 6, 17, 19, 20 | syl22anc 837 |
. . . . 5
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+)) → if(𝑟 ≤ 𝑅, 𝑟, 𝑅) ∈ ℝ) |
22 | 21, 13 | elrpd 12815 |
. . . 4
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+)) → if(𝑟 ≤ 𝑅, 𝑟, 𝑅) ∈
ℝ+) |
23 | | simprl 769 |
. . . . . . 7
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+)) → 𝑧 ∈ 𝑋) |
24 | | xrmin2 12958 |
. . . . . . . 8
⊢ ((𝑟 ∈ ℝ*
∧ 𝑅 ∈
ℝ*) → if(𝑟 ≤ 𝑅, 𝑟, 𝑅) ≤ 𝑅) |
25 | 2, 3, 24 | syl2anc 585 |
. . . . . . 7
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+)) → if(𝑟 ≤ 𝑅, 𝑟, 𝑅) ≤ 𝑅) |
26 | 23, 4, 25 | 3jca 1128 |
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+)) → (𝑧 ∈ 𝑋 ∧ if(𝑟 ≤ 𝑅, 𝑟, 𝑅) ∈ ℝ* ∧ if(𝑟 ≤ 𝑅, 𝑟, 𝑅) ≤ 𝑅)) |
27 | | stdbdmet.1 |
. . . . . . 7
⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅)) |
28 | 27 | stdbdbl 23718 |
. . . . . 6
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑧 ∈ 𝑋 ∧ if(𝑟 ≤ 𝑅, 𝑟, 𝑅) ∈ ℝ* ∧ if(𝑟 ≤ 𝑅, 𝑟, 𝑅) ≤ 𝑅)) → (𝑧(ball‘𝐷)if(𝑟 ≤ 𝑅, 𝑟, 𝑅)) = (𝑧(ball‘𝐶)if(𝑟 ≤ 𝑅, 𝑟, 𝑅))) |
29 | 26, 28 | syldan 592 |
. . . . 5
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+)) → (𝑧(ball‘𝐷)if(𝑟 ≤ 𝑅, 𝑟, 𝑅)) = (𝑧(ball‘𝐶)if(𝑟 ≤ 𝑅, 𝑟, 𝑅))) |
30 | 29 | eqcomd 2742 |
. . . 4
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+)) → (𝑧(ball‘𝐶)if(𝑟 ≤ 𝑅, 𝑟, 𝑅)) = (𝑧(ball‘𝐷)if(𝑟 ≤ 𝑅, 𝑟, 𝑅))) |
31 | | breq1 5084 |
. . . . . 6
⊢ (𝑠 = if(𝑟 ≤ 𝑅, 𝑟, 𝑅) → (𝑠 ≤ 𝑟 ↔ if(𝑟 ≤ 𝑅, 𝑟, 𝑅) ≤ 𝑟)) |
32 | | oveq2 7315 |
. . . . . . 7
⊢ (𝑠 = if(𝑟 ≤ 𝑅, 𝑟, 𝑅) → (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐶)if(𝑟 ≤ 𝑅, 𝑟, 𝑅))) |
33 | | oveq2 7315 |
. . . . . . 7
⊢ (𝑠 = if(𝑟 ≤ 𝑅, 𝑟, 𝑅) → (𝑧(ball‘𝐷)𝑠) = (𝑧(ball‘𝐷)if(𝑟 ≤ 𝑅, 𝑟, 𝑅))) |
34 | 32, 33 | eqeq12d 2752 |
. . . . . 6
⊢ (𝑠 = if(𝑟 ≤ 𝑅, 𝑟, 𝑅) → ((𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠) ↔ (𝑧(ball‘𝐶)if(𝑟 ≤ 𝑅, 𝑟, 𝑅)) = (𝑧(ball‘𝐷)if(𝑟 ≤ 𝑅, 𝑟, 𝑅)))) |
35 | 31, 34 | anbi12d 632 |
. . . . 5
⊢ (𝑠 = if(𝑟 ≤ 𝑅, 𝑟, 𝑅) → ((𝑠 ≤ 𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)) ↔ (if(𝑟 ≤ 𝑅, 𝑟, 𝑅) ≤ 𝑟 ∧ (𝑧(ball‘𝐶)if(𝑟 ≤ 𝑅, 𝑟, 𝑅)) = (𝑧(ball‘𝐷)if(𝑟 ≤ 𝑅, 𝑟, 𝑅))))) |
36 | 35 | rspcev 3566 |
. . . 4
⊢
((if(𝑟 ≤ 𝑅, 𝑟, 𝑅) ∈ ℝ+ ∧ (if(𝑟 ≤ 𝑅, 𝑟, 𝑅) ≤ 𝑟 ∧ (𝑧(ball‘𝐶)if(𝑟 ≤ 𝑅, 𝑟, 𝑅)) = (𝑧(ball‘𝐷)if(𝑟 ≤ 𝑅, 𝑟, 𝑅)))) → ∃𝑠 ∈ ℝ+ (𝑠 ≤ 𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠))) |
37 | 22, 19, 30, 36 | syl12anc 835 |
. . 3
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+)) →
∃𝑠 ∈
ℝ+ (𝑠 ≤
𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠))) |
38 | 37 | ralrimivva 3194 |
. 2
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → ∀𝑧 ∈ 𝑋 ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
(𝑠 ≤ 𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠))) |
39 | | simp1 1136 |
. . 3
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → 𝐶 ∈ (∞Met‘𝑋)) |
40 | 27 | stdbdxmet 23716 |
. . 3
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → 𝐷 ∈ (∞Met‘𝑋)) |
41 | | stdbdmopn.2 |
. . . 4
⊢ 𝐽 = (MetOpen‘𝐶) |
42 | | eqid 2736 |
. . . 4
⊢
(MetOpen‘𝐷) =
(MetOpen‘𝐷) |
43 | 41, 42 | metequiv2 23711 |
. . 3
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (∀𝑧 ∈ 𝑋 ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
(𝑠 ≤ 𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)) → 𝐽 = (MetOpen‘𝐷))) |
44 | 39, 40, 43 | syl2anc 585 |
. 2
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → (∀𝑧 ∈ 𝑋 ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
(𝑠 ≤ 𝑟 ∧ (𝑧(ball‘𝐶)𝑠) = (𝑧(ball‘𝐷)𝑠)) → 𝐽 = (MetOpen‘𝐷))) |
45 | 38, 44 | mpd 15 |
1
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → 𝐽 = (MetOpen‘𝐷)) |