ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cxplt3 Unicode version

Theorem cxplt3 13911
Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-May-2016.)
Assertion
Ref Expression
cxplt3  |-  ( ( ( A  e.  RR+  /\  A  <  1 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  -> 
( B  <  C  <->  ( A  ^c  C )  <  ( A  ^c  B ) ) )

Proof of Theorem cxplt3
StepHypRef Expression
1 simpll 527 . . . 4  |-  ( ( ( A  e.  RR+  /\  A  <  1 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  ->  A  e.  RR+ )
2 simprl 529 . . . . 5  |-  ( ( ( A  e.  RR+  /\  A  <  1 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  ->  B  e.  RR )
32recnd 7960 . . . 4  |-  ( ( ( A  e.  RR+  /\  A  <  1 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  ->  B  e.  CC )
4 cxprec 13902 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  (
( 1  /  A
)  ^c  B )  =  ( 1  /  ( A  ^c  B ) ) )
51, 3, 4syl2anc 411 . . 3  |-  ( ( ( A  e.  RR+  /\  A  <  1 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  -> 
( ( 1  /  A )  ^c  B )  =  ( 1  /  ( A  ^c  B ) ) )
6 simprr 531 . . . . 5  |-  ( ( ( A  e.  RR+  /\  A  <  1 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  ->  C  e.  RR )
76recnd 7960 . . . 4  |-  ( ( ( A  e.  RR+  /\  A  <  1 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  ->  C  e.  CC )
8 cxprec 13902 . . . 4  |-  ( ( A  e.  RR+  /\  C  e.  CC )  ->  (
( 1  /  A
)  ^c  C )  =  ( 1  /  ( A  ^c  C ) ) )
91, 7, 8syl2anc 411 . . 3  |-  ( ( ( A  e.  RR+  /\  A  <  1 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  -> 
( ( 1  /  A )  ^c  C )  =  ( 1  /  ( A  ^c  C ) ) )
105, 9breq12d 4011 . 2  |-  ( ( ( A  e.  RR+  /\  A  <  1 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  -> 
( ( ( 1  /  A )  ^c  B )  <  (
( 1  /  A
)  ^c  C )  <->  ( 1  / 
( A  ^c  B ) )  < 
( 1  /  ( A  ^c  C ) ) ) )
111rprecred 9679 . . 3  |-  ( ( ( A  e.  RR+  /\  A  <  1 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  -> 
( 1  /  A
)  e.  RR )
12 simplr 528 . . . 4  |-  ( ( ( A  e.  RR+  /\  A  <  1 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  ->  A  <  1 )
131reclt1d 9681 . . . 4  |-  ( ( ( A  e.  RR+  /\  A  <  1 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  -> 
( A  <  1  <->  1  <  ( 1  /  A ) ) )
1412, 13mpbid 147 . . 3  |-  ( ( ( A  e.  RR+  /\  A  <  1 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  -> 
1  <  ( 1  /  A ) )
15 cxplt 13907 . . 3  |-  ( ( ( ( 1  /  A )  e.  RR  /\  1  <  ( 1  /  A ) )  /\  ( B  e.  RR  /\  C  e.  RR ) )  -> 
( B  <  C  <->  ( ( 1  /  A
)  ^c  B )  <  ( ( 1  /  A )  ^c  C ) ) )
1611, 14, 2, 6, 15syl22anc 1239 . 2  |-  ( ( ( A  e.  RR+  /\  A  <  1 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  -> 
( B  <  C  <->  ( ( 1  /  A
)  ^c  B )  <  ( ( 1  /  A )  ^c  C ) ) )
17 rpcxpcl 13895 . . . 4  |-  ( ( A  e.  RR+  /\  C  e.  RR )  ->  ( A  ^c  C )  e.  RR+ )
1817ad2ant2rl 511 . . 3  |-  ( ( ( A  e.  RR+  /\  A  <  1 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  -> 
( A  ^c  C )  e.  RR+ )
19 rpcxpcl 13895 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  RR )  ->  ( A  ^c  B )  e.  RR+ )
2019ad2ant2r 509 . . 3  |-  ( ( ( A  e.  RR+  /\  A  <  1 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  -> 
( A  ^c  B )  e.  RR+ )
2118, 20ltrecd 9686 . 2  |-  ( ( ( A  e.  RR+  /\  A  <  1 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  -> 
( ( A  ^c  C )  <  ( A  ^c  B )  <-> 
( 1  /  ( A  ^c  B ) )  <  ( 1  /  ( A  ^c  C ) ) ) )
2210, 16, 213bitr4d 220 1  |-  ( ( ( A  e.  RR+  /\  A  <  1 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  -> 
( B  <  C  <->  ( A  ^c  C )  <  ( A  ^c  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2146   class class class wbr 3998  (class class class)co 5865   CCcc 7784   RRcr 7785   1c1 7787    < clt 7966    / cdiv 8602   RR+crp 9624    ^c ccxp 13849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904  ax-arch 7905  ax-caucvg 7906  ax-pre-suploc 7907  ax-addf 7908  ax-mulf 7909
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-disj 3976  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-isom 5217  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-of 6073  df-1st 6131  df-2nd 6132  df-recs 6296  df-irdg 6361  df-frec 6382  df-1o 6407  df-oadd 6411  df-er 6525  df-map 6640  df-pm 6641  df-en 6731  df-dom 6732  df-fin 6733  df-sup 6973  df-inf 6974  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8603  df-inn 8893  df-2 8951  df-3 8952  df-4 8953  df-n0 9150  df-z 9227  df-uz 9502  df-q 9593  df-rp 9625  df-xneg 9743  df-xadd 9744  df-ioo 9863  df-ico 9865  df-icc 9866  df-fz 9980  df-fzo 10113  df-seqfrec 10416  df-exp 10490  df-fac 10674  df-bc 10696  df-ihash 10724  df-shft 10792  df-cj 10819  df-re 10820  df-im 10821  df-rsqrt 10975  df-abs 10976  df-clim 11255  df-sumdc 11330  df-ef 11624  df-e 11625  df-rest 12612  df-topgen 12631  df-psmet 13058  df-xmet 13059  df-met 13060  df-bl 13061  df-mopn 13062  df-top 13067  df-topon 13080  df-bases 13112  df-ntr 13167  df-cn 13259  df-cnp 13260  df-tx 13324  df-cncf 13629  df-limced 13696  df-dvap 13697  df-relog 13850  df-rpcxp 13851
This theorem is referenced by:  cxple3  13912  cxplt3d  13925
  Copyright terms: Public domain W3C validator