ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcdmultiplez Unicode version

Theorem gcdmultiplez 11987
Description: Extend gcdmultiple 11986 so  N can be an integer. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
gcdmultiplez  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( M  gcd  ( M  x.  N )
)  =  M )

Proof of Theorem gcdmultiplez
StepHypRef Expression
1 0z 9235 . . . 4  |-  0  e.  ZZ
2 zdceq 9299 . . . 4  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
31, 2mpan2 425 . . 3  |-  ( N  e.  ZZ  -> DECID  N  =  0
)
4 exmiddc 836 . . 3  |-  (DECID  N  =  0  ->  ( N  =  0  \/  -.  N  =  0 ) )
5 nncn 8898 . . . . . . . 8  |-  ( M  e.  NN  ->  M  e.  CC )
6 mul01 8320 . . . . . . . . 9  |-  ( M  e.  CC  ->  ( M  x.  0 )  =  0 )
76oveq2d 5881 . . . . . . . 8  |-  ( M  e.  CC  ->  ( M  gcd  ( M  x.  0 ) )  =  ( M  gcd  0
) )
85, 7syl 14 . . . . . . 7  |-  ( M  e.  NN  ->  ( M  gcd  ( M  x.  0 ) )  =  ( M  gcd  0
) )
98adantr 276 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( M  gcd  ( M  x.  0 ) )  =  ( M  gcd  0 ) )
10 nnnn0 9154 . . . . . . . 8  |-  ( M  e.  NN  ->  M  e.  NN0 )
11 nn0gcdid0 11947 . . . . . . . 8  |-  ( M  e.  NN0  ->  ( M  gcd  0 )  =  M )
1210, 11syl 14 . . . . . . 7  |-  ( M  e.  NN  ->  ( M  gcd  0 )  =  M )
1312adantr 276 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( M  gcd  0
)  =  M )
149, 13eqtrd 2208 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( M  gcd  ( M  x.  0 ) )  =  M )
15 oveq2 5873 . . . . . . 7  |-  ( N  =  0  ->  ( M  x.  N )  =  ( M  x.  0 ) )
1615oveq2d 5881 . . . . . 6  |-  ( N  =  0  ->  ( M  gcd  ( M  x.  N ) )  =  ( M  gcd  ( M  x.  0 ) ) )
1716eqeq1d 2184 . . . . 5  |-  ( N  =  0  ->  (
( M  gcd  ( M  x.  N )
)  =  M  <->  ( M  gcd  ( M  x.  0 ) )  =  M ) )
1814, 17syl5ibr 156 . . . 4  |-  ( N  =  0  ->  (
( M  e.  NN  /\  N  e.  ZZ )  ->  ( M  gcd  ( M  x.  N
) )  =  M ) )
19 df-ne 2346 . . . . 5  |-  ( N  =/=  0  <->  -.  N  =  0 )
20 zcn 9229 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  N  e.  CC )
21 absmul 11044 . . . . . . . . . . 11  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( abs `  ( M  x.  N )
)  =  ( ( abs `  M )  x.  ( abs `  N
) ) )
225, 20, 21syl2an 289 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( abs `  ( M  x.  N )
)  =  ( ( abs `  M )  x.  ( abs `  N
) ) )
23 nnre 8897 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  M  e.  RR )
2410nn0ge0d 9203 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  0  <_  M )
2523, 24absidd 11142 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  ( abs `  M )  =  M )
2625oveq1d 5880 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  (
( abs `  M
)  x.  ( abs `  N ) )  =  ( M  x.  ( abs `  N ) ) )
2726adantr 276 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  x.  ( abs `  N ) )  =  ( M  x.  ( abs `  N ) ) )
2822, 27eqtrd 2208 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( abs `  ( M  x.  N )
)  =  ( M  x.  ( abs `  N
) ) )
2928oveq2d 5881 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( M  gcd  ( abs `  ( M  x.  N ) ) )  =  ( M  gcd  ( M  x.  ( abs `  N ) ) ) )
3029adantr 276 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  ZZ )  /\  N  =/=  0
)  ->  ( M  gcd  ( abs `  ( M  x.  N )
) )  =  ( M  gcd  ( M  x.  ( abs `  N
) ) ) )
31 simpll 527 . . . . . . . . 9  |-  ( ( ( M  e.  NN  /\  N  e.  ZZ )  /\  N  =/=  0
)  ->  M  e.  NN )
3231nnzd 9345 . . . . . . . 8  |-  ( ( ( M  e.  NN  /\  N  e.  ZZ )  /\  N  =/=  0
)  ->  M  e.  ZZ )
33 nnz 9243 . . . . . . . . . 10  |-  ( M  e.  NN  ->  M  e.  ZZ )
34 zmulcl 9277 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  N
)  e.  ZZ )
3533, 34sylan 283 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( M  x.  N
)  e.  ZZ )
3635adantr 276 . . . . . . . 8  |-  ( ( ( M  e.  NN  /\  N  e.  ZZ )  /\  N  =/=  0
)  ->  ( M  x.  N )  e.  ZZ )
37 gcdabs2 11956 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  ( M  x.  N
)  e.  ZZ )  ->  ( M  gcd  ( abs `  ( M  x.  N ) ) )  =  ( M  gcd  ( M  x.  N ) ) )
3832, 36, 37syl2anc 411 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  ZZ )  /\  N  =/=  0
)  ->  ( M  gcd  ( abs `  ( M  x.  N )
) )  =  ( M  gcd  ( M  x.  N ) ) )
39 nnabscl 11075 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
40 gcdmultiple 11986 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  ( abs `  N )  e.  NN )  -> 
( M  gcd  ( M  x.  ( abs `  N ) ) )  =  M )
4139, 40sylan2 286 . . . . . . . 8  |-  ( ( M  e.  NN  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  ( M  gcd  ( M  x.  ( abs `  N ) ) )  =  M )
4241anassrs 400 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  ZZ )  /\  N  =/=  0
)  ->  ( M  gcd  ( M  x.  ( abs `  N ) ) )  =  M )
4330, 38, 423eqtr3d 2216 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  ZZ )  /\  N  =/=  0
)  ->  ( M  gcd  ( M  x.  N
) )  =  M )
4443expcom 116 . . . . 5  |-  ( N  =/=  0  ->  (
( M  e.  NN  /\  N  e.  ZZ )  ->  ( M  gcd  ( M  x.  N
) )  =  M ) )
4519, 44sylbir 135 . . . 4  |-  ( -.  N  =  0  -> 
( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( M  gcd  ( M  x.  N ) )  =  M ) )
4618, 45jaoi 716 . . 3  |-  ( ( N  =  0  \/ 
-.  N  =  0 )  ->  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( M  gcd  ( M  x.  N ) )  =  M ) )
473, 4, 463syl 17 . 2  |-  ( N  e.  ZZ  ->  (
( M  e.  NN  /\  N  e.  ZZ )  ->  ( M  gcd  ( M  x.  N
) )  =  M ) )
4847anabsi7 581 1  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( M  gcd  ( M  x.  N )
)  =  M )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708  DECID wdc 834    = wceq 1353    e. wcel 2146    =/= wne 2345   ` cfv 5208  (class class class)co 5865   CCcc 7784   0cc0 7786    x. cmul 7791   NNcn 8890   NN0cn0 9147   ZZcz 9224   abscabs 10972    gcd cgcd 11908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904  ax-arch 7905  ax-caucvg 7906
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-frec 6382  df-sup 6973  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8602  df-inn 8891  df-2 8949  df-3 8950  df-4 8951  df-n0 9148  df-z 9225  df-uz 9500  df-q 9591  df-rp 9623  df-fz 9978  df-fzo 10111  df-fl 10238  df-mod 10291  df-seqfrec 10414  df-exp 10488  df-cj 10817  df-re 10818  df-im 10819  df-rsqrt 10973  df-abs 10974  df-dvds 11761  df-gcd 11909
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator