ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcdmultiplez Unicode version

Theorem gcdmultiplez 11954
Description: Extend gcdmultiple 11953 so  N can be an integer. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
gcdmultiplez  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( M  gcd  ( M  x.  N )
)  =  M )

Proof of Theorem gcdmultiplez
StepHypRef Expression
1 0z 9202 . . . 4  |-  0  e.  ZZ
2 zdceq 9266 . . . 4  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
31, 2mpan2 422 . . 3  |-  ( N  e.  ZZ  -> DECID  N  =  0
)
4 exmiddc 826 . . 3  |-  (DECID  N  =  0  ->  ( N  =  0  \/  -.  N  =  0 ) )
5 nncn 8865 . . . . . . . 8  |-  ( M  e.  NN  ->  M  e.  CC )
6 mul01 8287 . . . . . . . . 9  |-  ( M  e.  CC  ->  ( M  x.  0 )  =  0 )
76oveq2d 5858 . . . . . . . 8  |-  ( M  e.  CC  ->  ( M  gcd  ( M  x.  0 ) )  =  ( M  gcd  0
) )
85, 7syl 14 . . . . . . 7  |-  ( M  e.  NN  ->  ( M  gcd  ( M  x.  0 ) )  =  ( M  gcd  0
) )
98adantr 274 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( M  gcd  ( M  x.  0 ) )  =  ( M  gcd  0 ) )
10 nnnn0 9121 . . . . . . . 8  |-  ( M  e.  NN  ->  M  e.  NN0 )
11 nn0gcdid0 11914 . . . . . . . 8  |-  ( M  e.  NN0  ->  ( M  gcd  0 )  =  M )
1210, 11syl 14 . . . . . . 7  |-  ( M  e.  NN  ->  ( M  gcd  0 )  =  M )
1312adantr 274 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( M  gcd  0
)  =  M )
149, 13eqtrd 2198 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( M  gcd  ( M  x.  0 ) )  =  M )
15 oveq2 5850 . . . . . . 7  |-  ( N  =  0  ->  ( M  x.  N )  =  ( M  x.  0 ) )
1615oveq2d 5858 . . . . . 6  |-  ( N  =  0  ->  ( M  gcd  ( M  x.  N ) )  =  ( M  gcd  ( M  x.  0 ) ) )
1716eqeq1d 2174 . . . . 5  |-  ( N  =  0  ->  (
( M  gcd  ( M  x.  N )
)  =  M  <->  ( M  gcd  ( M  x.  0 ) )  =  M ) )
1814, 17syl5ibr 155 . . . 4  |-  ( N  =  0  ->  (
( M  e.  NN  /\  N  e.  ZZ )  ->  ( M  gcd  ( M  x.  N
) )  =  M ) )
19 df-ne 2337 . . . . 5  |-  ( N  =/=  0  <->  -.  N  =  0 )
20 zcn 9196 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  N  e.  CC )
21 absmul 11011 . . . . . . . . . . 11  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( abs `  ( M  x.  N )
)  =  ( ( abs `  M )  x.  ( abs `  N
) ) )
225, 20, 21syl2an 287 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( abs `  ( M  x.  N )
)  =  ( ( abs `  M )  x.  ( abs `  N
) ) )
23 nnre 8864 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  M  e.  RR )
2410nn0ge0d 9170 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  0  <_  M )
2523, 24absidd 11109 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  ( abs `  M )  =  M )
2625oveq1d 5857 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  (
( abs `  M
)  x.  ( abs `  N ) )  =  ( M  x.  ( abs `  N ) ) )
2726adantr 274 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  x.  ( abs `  N ) )  =  ( M  x.  ( abs `  N ) ) )
2822, 27eqtrd 2198 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( abs `  ( M  x.  N )
)  =  ( M  x.  ( abs `  N
) ) )
2928oveq2d 5858 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( M  gcd  ( abs `  ( M  x.  N ) ) )  =  ( M  gcd  ( M  x.  ( abs `  N ) ) ) )
3029adantr 274 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  ZZ )  /\  N  =/=  0
)  ->  ( M  gcd  ( abs `  ( M  x.  N )
) )  =  ( M  gcd  ( M  x.  ( abs `  N
) ) ) )
31 simpll 519 . . . . . . . . 9  |-  ( ( ( M  e.  NN  /\  N  e.  ZZ )  /\  N  =/=  0
)  ->  M  e.  NN )
3231nnzd 9312 . . . . . . . 8  |-  ( ( ( M  e.  NN  /\  N  e.  ZZ )  /\  N  =/=  0
)  ->  M  e.  ZZ )
33 nnz 9210 . . . . . . . . . 10  |-  ( M  e.  NN  ->  M  e.  ZZ )
34 zmulcl 9244 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  N
)  e.  ZZ )
3533, 34sylan 281 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( M  x.  N
)  e.  ZZ )
3635adantr 274 . . . . . . . 8  |-  ( ( ( M  e.  NN  /\  N  e.  ZZ )  /\  N  =/=  0
)  ->  ( M  x.  N )  e.  ZZ )
37 gcdabs2 11923 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  ( M  x.  N
)  e.  ZZ )  ->  ( M  gcd  ( abs `  ( M  x.  N ) ) )  =  ( M  gcd  ( M  x.  N ) ) )
3832, 36, 37syl2anc 409 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  ZZ )  /\  N  =/=  0
)  ->  ( M  gcd  ( abs `  ( M  x.  N )
) )  =  ( M  gcd  ( M  x.  N ) ) )
39 nnabscl 11042 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
40 gcdmultiple 11953 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  ( abs `  N )  e.  NN )  -> 
( M  gcd  ( M  x.  ( abs `  N ) ) )  =  M )
4139, 40sylan2 284 . . . . . . . 8  |-  ( ( M  e.  NN  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  ( M  gcd  ( M  x.  ( abs `  N ) ) )  =  M )
4241anassrs 398 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  ZZ )  /\  N  =/=  0
)  ->  ( M  gcd  ( M  x.  ( abs `  N ) ) )  =  M )
4330, 38, 423eqtr3d 2206 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  ZZ )  /\  N  =/=  0
)  ->  ( M  gcd  ( M  x.  N
) )  =  M )
4443expcom 115 . . . . 5  |-  ( N  =/=  0  ->  (
( M  e.  NN  /\  N  e.  ZZ )  ->  ( M  gcd  ( M  x.  N
) )  =  M ) )
4519, 44sylbir 134 . . . 4  |-  ( -.  N  =  0  -> 
( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( M  gcd  ( M  x.  N ) )  =  M ) )
4618, 45jaoi 706 . . 3  |-  ( ( N  =  0  \/ 
-.  N  =  0 )  ->  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( M  gcd  ( M  x.  N ) )  =  M ) )
473, 4, 463syl 17 . 2  |-  ( N  e.  ZZ  ->  (
( M  e.  NN  /\  N  e.  ZZ )  ->  ( M  gcd  ( M  x.  N
) )  =  M ) )
4847anabsi7 571 1  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( M  gcd  ( M  x.  N )
)  =  M )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 824    = wceq 1343    e. wcel 2136    =/= wne 2336   ` cfv 5188  (class class class)co 5842   CCcc 7751   0cc0 7753    x. cmul 7758   NNcn 8857   NN0cn0 9114   ZZcz 9191   abscabs 10939    gcd cgcd 11875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-sup 6949  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-dvds 11728  df-gcd 11876
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator