ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcdmultiplez Unicode version

Theorem gcdmultiplez 12528
Description: Extend gcdmultiple 12527 so  N can be an integer. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
gcdmultiplez  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( M  gcd  ( M  x.  N )
)  =  M )

Proof of Theorem gcdmultiplez
StepHypRef Expression
1 0z 9445 . . . 4  |-  0  e.  ZZ
2 zdceq 9510 . . . 4  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
31, 2mpan2 425 . . 3  |-  ( N  e.  ZZ  -> DECID  N  =  0
)
4 exmiddc 841 . . 3  |-  (DECID  N  =  0  ->  ( N  =  0  \/  -.  N  =  0 ) )
5 nncn 9106 . . . . . . . 8  |-  ( M  e.  NN  ->  M  e.  CC )
6 mul01 8523 . . . . . . . . 9  |-  ( M  e.  CC  ->  ( M  x.  0 )  =  0 )
76oveq2d 6010 . . . . . . . 8  |-  ( M  e.  CC  ->  ( M  gcd  ( M  x.  0 ) )  =  ( M  gcd  0
) )
85, 7syl 14 . . . . . . 7  |-  ( M  e.  NN  ->  ( M  gcd  ( M  x.  0 ) )  =  ( M  gcd  0
) )
98adantr 276 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( M  gcd  ( M  x.  0 ) )  =  ( M  gcd  0 ) )
10 nnnn0 9364 . . . . . . . 8  |-  ( M  e.  NN  ->  M  e.  NN0 )
11 nn0gcdid0 12488 . . . . . . . 8  |-  ( M  e.  NN0  ->  ( M  gcd  0 )  =  M )
1210, 11syl 14 . . . . . . 7  |-  ( M  e.  NN  ->  ( M  gcd  0 )  =  M )
1312adantr 276 . . . . . 6  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( M  gcd  0
)  =  M )
149, 13eqtrd 2262 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( M  gcd  ( M  x.  0 ) )  =  M )
15 oveq2 6002 . . . . . . 7  |-  ( N  =  0  ->  ( M  x.  N )  =  ( M  x.  0 ) )
1615oveq2d 6010 . . . . . 6  |-  ( N  =  0  ->  ( M  gcd  ( M  x.  N ) )  =  ( M  gcd  ( M  x.  0 ) ) )
1716eqeq1d 2238 . . . . 5  |-  ( N  =  0  ->  (
( M  gcd  ( M  x.  N )
)  =  M  <->  ( M  gcd  ( M  x.  0 ) )  =  M ) )
1814, 17imbitrrid 156 . . . 4  |-  ( N  =  0  ->  (
( M  e.  NN  /\  N  e.  ZZ )  ->  ( M  gcd  ( M  x.  N
) )  =  M ) )
19 df-ne 2401 . . . . 5  |-  ( N  =/=  0  <->  -.  N  =  0 )
20 zcn 9439 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  N  e.  CC )
21 absmul 11566 . . . . . . . . . . 11  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( abs `  ( M  x.  N )
)  =  ( ( abs `  M )  x.  ( abs `  N
) ) )
225, 20, 21syl2an 289 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( abs `  ( M  x.  N )
)  =  ( ( abs `  M )  x.  ( abs `  N
) ) )
23 nnre 9105 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  M  e.  RR )
2410nn0ge0d 9413 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  0  <_  M )
2523, 24absidd 11664 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  ( abs `  M )  =  M )
2625oveq1d 6009 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  (
( abs `  M
)  x.  ( abs `  N ) )  =  ( M  x.  ( abs `  N ) ) )
2726adantr 276 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( ( abs `  M
)  x.  ( abs `  N ) )  =  ( M  x.  ( abs `  N ) ) )
2822, 27eqtrd 2262 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( abs `  ( M  x.  N )
)  =  ( M  x.  ( abs `  N
) ) )
2928oveq2d 6010 . . . . . . . 8  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( M  gcd  ( abs `  ( M  x.  N ) ) )  =  ( M  gcd  ( M  x.  ( abs `  N ) ) ) )
3029adantr 276 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  ZZ )  /\  N  =/=  0
)  ->  ( M  gcd  ( abs `  ( M  x.  N )
) )  =  ( M  gcd  ( M  x.  ( abs `  N
) ) ) )
31 simpll 527 . . . . . . . . 9  |-  ( ( ( M  e.  NN  /\  N  e.  ZZ )  /\  N  =/=  0
)  ->  M  e.  NN )
3231nnzd 9556 . . . . . . . 8  |-  ( ( ( M  e.  NN  /\  N  e.  ZZ )  /\  N  =/=  0
)  ->  M  e.  ZZ )
33 nnz 9453 . . . . . . . . . 10  |-  ( M  e.  NN  ->  M  e.  ZZ )
34 zmulcl 9488 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  N
)  e.  ZZ )
3533, 34sylan 283 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( M  x.  N
)  e.  ZZ )
3635adantr 276 . . . . . . . 8  |-  ( ( ( M  e.  NN  /\  N  e.  ZZ )  /\  N  =/=  0
)  ->  ( M  x.  N )  e.  ZZ )
37 gcdabs2 12497 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  ( M  x.  N
)  e.  ZZ )  ->  ( M  gcd  ( abs `  ( M  x.  N ) ) )  =  ( M  gcd  ( M  x.  N ) ) )
3832, 36, 37syl2anc 411 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  ZZ )  /\  N  =/=  0
)  ->  ( M  gcd  ( abs `  ( M  x.  N )
) )  =  ( M  gcd  ( M  x.  N ) ) )
39 nnabscl 11597 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
40 gcdmultiple 12527 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  ( abs `  N )  e.  NN )  -> 
( M  gcd  ( M  x.  ( abs `  N ) ) )  =  M )
4139, 40sylan2 286 . . . . . . . 8  |-  ( ( M  e.  NN  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  ( M  gcd  ( M  x.  ( abs `  N ) ) )  =  M )
4241anassrs 400 . . . . . . 7  |-  ( ( ( M  e.  NN  /\  N  e.  ZZ )  /\  N  =/=  0
)  ->  ( M  gcd  ( M  x.  ( abs `  N ) ) )  =  M )
4330, 38, 423eqtr3d 2270 . . . . . 6  |-  ( ( ( M  e.  NN  /\  N  e.  ZZ )  /\  N  =/=  0
)  ->  ( M  gcd  ( M  x.  N
) )  =  M )
4443expcom 116 . . . . 5  |-  ( N  =/=  0  ->  (
( M  e.  NN  /\  N  e.  ZZ )  ->  ( M  gcd  ( M  x.  N
) )  =  M ) )
4519, 44sylbir 135 . . . 4  |-  ( -.  N  =  0  -> 
( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( M  gcd  ( M  x.  N ) )  =  M ) )
4618, 45jaoi 721 . . 3  |-  ( ( N  =  0  \/ 
-.  N  =  0 )  ->  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( M  gcd  ( M  x.  N ) )  =  M ) )
473, 4, 463syl 17 . 2  |-  ( N  e.  ZZ  ->  (
( M  e.  NN  /\  N  e.  ZZ )  ->  ( M  gcd  ( M  x.  N
) )  =  M ) )
4847anabsi7 581 1  |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( M  gcd  ( M  x.  N )
)  =  M )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713  DECID wdc 839    = wceq 1395    e. wcel 2200    =/= wne 2400   ` cfv 5314  (class class class)co 5994   CCcc 7985   0cc0 7987    x. cmul 7992   NNcn 9098   NN0cn0 9357   ZZcz 9434   abscabs 11494    gcd cgcd 12460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-sup 7139  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-n0 9358  df-z 9435  df-uz 9711  df-q 9803  df-rp 9838  df-fz 10193  df-fzo 10327  df-fl 10477  df-mod 10532  df-seqfrec 10657  df-exp 10748  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-dvds 12285  df-gcd 12461
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator