| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > geoisum1 | GIF version | ||
| Description: The infinite sum of 𝐴↑1 + 𝐴↑2... is (𝐴 / (1 − 𝐴)). (Contributed by NM, 1-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.) |
| Ref | Expression |
|---|---|
| geoisum1 | ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → Σ𝑘 ∈ ℕ (𝐴↑𝑘) = (𝐴 / (1 − 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 9684 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
| 2 | 1zzd 9399 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 1 ∈ ℤ) | |
| 3 | simpr 110 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) | |
| 4 | simpll 527 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℂ) | |
| 5 | 3 | nnnn0d 9348 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0) |
| 6 | 4, 5 | expcld 10818 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (𝐴↑𝑘) ∈ ℂ) |
| 7 | oveq2 5952 | . . . . 5 ⊢ (𝑛 = 𝑘 → (𝐴↑𝑛) = (𝐴↑𝑘)) | |
| 8 | eqid 2205 | . . . . 5 ⊢ (𝑛 ∈ ℕ ↦ (𝐴↑𝑛)) = (𝑛 ∈ ℕ ↦ (𝐴↑𝑛)) | |
| 9 | 7, 8 | fvmptg 5655 | . . . 4 ⊢ ((𝑘 ∈ ℕ ∧ (𝐴↑𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) |
| 10 | 3, 6, 9 | syl2anc 411 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) |
| 11 | simpl 109 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ ℂ) | |
| 12 | simpr 110 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) < 1) | |
| 13 | 1nn0 9311 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
| 14 | 13 | a1i 9 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 1 ∈ ℕ0) |
| 15 | elnnuz 9685 | . . . . 5 ⊢ (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ≥‘1)) | |
| 16 | 15, 10 | sylan2br 288 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ (ℤ≥‘1)) → ((𝑛 ∈ ℕ ↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) |
| 17 | 11, 12, 14, 16 | geolim2 11823 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (𝐴↑𝑛))) ⇝ ((𝐴↑1) / (1 − 𝐴))) |
| 18 | 1, 2, 10, 6, 17 | isumclim 11732 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → Σ𝑘 ∈ ℕ (𝐴↑𝑘) = ((𝐴↑1) / (1 − 𝐴))) |
| 19 | exp1 10690 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) | |
| 20 | 19 | adantr 276 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (𝐴↑1) = 𝐴) |
| 21 | 20 | oveq1d 5959 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((𝐴↑1) / (1 − 𝐴)) = (𝐴 / (1 − 𝐴))) |
| 22 | 18, 21 | eqtrd 2238 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → Σ𝑘 ∈ ℕ (𝐴↑𝑘) = (𝐴 / (1 − 𝐴))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2176 class class class wbr 4044 ↦ cmpt 4105 ‘cfv 5271 (class class class)co 5944 ℂcc 7923 1c1 7926 < clt 8107 − cmin 8243 / cdiv 8745 ℕcn 9036 ℕ0cn0 9295 ℤ≥cuz 9648 ↑cexp 10683 abscabs 11308 Σcsu 11664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 ax-arch 8044 ax-caucvg 8045 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-isom 5280 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-irdg 6456 df-frec 6477 df-1o 6502 df-oadd 6506 df-er 6620 df-en 6828 df-dom 6829 df-fin 6830 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-n0 9296 df-z 9373 df-uz 9649 df-q 9741 df-rp 9776 df-fz 10131 df-fzo 10265 df-seqfrec 10593 df-exp 10684 df-ihash 10921 df-cj 11153 df-re 11154 df-im 11155 df-rsqrt 11309 df-abs 11310 df-clim 11590 df-sumdc 11665 |
| This theorem is referenced by: geoisum1c 11831 geoihalfsum 11833 |
| Copyright terms: Public domain | W3C validator |