![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > geoisum1 | GIF version |
Description: The infinite sum of 𝐴↑1 + 𝐴↑2... is (𝐴 / (1 − 𝐴)). (Contributed by NM, 1-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.) |
Ref | Expression |
---|---|
geoisum1 | ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → Σ𝑘 ∈ ℕ (𝐴↑𝑘) = (𝐴 / (1 − 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 9054 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
2 | 1zzd 8777 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 1 ∈ ℤ) | |
3 | simpr 108 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) | |
4 | simpll 496 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℂ) | |
5 | 3 | nnnn0d 8726 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0) |
6 | 4, 5 | expcld 10086 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (𝐴↑𝑘) ∈ ℂ) |
7 | oveq2 5660 | . . . . 5 ⊢ (𝑛 = 𝑘 → (𝐴↑𝑛) = (𝐴↑𝑘)) | |
8 | eqid 2088 | . . . . 5 ⊢ (𝑛 ∈ ℕ ↦ (𝐴↑𝑛)) = (𝑛 ∈ ℕ ↦ (𝐴↑𝑛)) | |
9 | 7, 8 | fvmptg 5380 | . . . 4 ⊢ ((𝑘 ∈ ℕ ∧ (𝐴↑𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) |
10 | 3, 6, 9 | syl2anc 403 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) |
11 | simpl 107 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ ℂ) | |
12 | simpr 108 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) < 1) | |
13 | 1nn0 8689 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
14 | 13 | a1i 9 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 1 ∈ ℕ0) |
15 | elnnuz 9055 | . . . . 5 ⊢ (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ≥‘1)) | |
16 | 15, 10 | sylan2br 282 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ (ℤ≥‘1)) → ((𝑛 ∈ ℕ ↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) |
17 | 11, 12, 14, 16 | geolim2 10906 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (𝐴↑𝑛))) ⇝ ((𝐴↑1) / (1 − 𝐴))) |
18 | 1, 2, 10, 6, 17 | isumclim 10815 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → Σ𝑘 ∈ ℕ (𝐴↑𝑘) = ((𝐴↑1) / (1 − 𝐴))) |
19 | exp1 9961 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) | |
20 | 19 | adantr 270 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (𝐴↑1) = 𝐴) |
21 | 20 | oveq1d 5667 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → ((𝐴↑1) / (1 − 𝐴)) = (𝐴 / (1 − 𝐴))) |
22 | 18, 21 | eqtrd 2120 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → Σ𝑘 ∈ ℕ (𝐴↑𝑘) = (𝐴 / (1 − 𝐴))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1289 ∈ wcel 1438 class class class wbr 3845 ↦ cmpt 3899 ‘cfv 5015 (class class class)co 5652 ℂcc 7348 1c1 7351 < clt 7522 − cmin 7653 / cdiv 8139 ℕcn 8422 ℕ0cn0 8673 ℤ≥cuz 9019 ↑cexp 9954 abscabs 10430 Σcsu 10742 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-coll 3954 ax-sep 3957 ax-nul 3965 ax-pow 4009 ax-pr 4036 ax-un 4260 ax-setind 4353 ax-iinf 4403 ax-cnex 7436 ax-resscn 7437 ax-1cn 7438 ax-1re 7439 ax-icn 7440 ax-addcl 7441 ax-addrcl 7442 ax-mulcl 7443 ax-mulrcl 7444 ax-addcom 7445 ax-mulcom 7446 ax-addass 7447 ax-mulass 7448 ax-distr 7449 ax-i2m1 7450 ax-0lt1 7451 ax-1rid 7452 ax-0id 7453 ax-rnegex 7454 ax-precex 7455 ax-cnre 7456 ax-pre-ltirr 7457 ax-pre-ltwlin 7458 ax-pre-lttrn 7459 ax-pre-apti 7460 ax-pre-ltadd 7461 ax-pre-mulgt0 7462 ax-pre-mulext 7463 ax-arch 7464 ax-caucvg 7465 |
This theorem depends on definitions: df-bi 115 df-dc 781 df-3or 925 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-nel 2351 df-ral 2364 df-rex 2365 df-reu 2366 df-rmo 2367 df-rab 2368 df-v 2621 df-sbc 2841 df-csb 2934 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-nul 3287 df-if 3394 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-int 3689 df-iun 3732 df-br 3846 df-opab 3900 df-mpt 3901 df-tr 3937 df-id 4120 df-po 4123 df-iso 4124 df-iord 4193 df-on 4195 df-ilim 4196 df-suc 4198 df-iom 4406 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-res 4450 df-ima 4451 df-iota 4980 df-fun 5017 df-fn 5018 df-f 5019 df-f1 5020 df-fo 5021 df-f1o 5022 df-fv 5023 df-isom 5024 df-riota 5608 df-ov 5655 df-oprab 5656 df-mpt2 5657 df-1st 5911 df-2nd 5912 df-recs 6070 df-irdg 6135 df-frec 6156 df-1o 6181 df-oadd 6185 df-er 6292 df-en 6458 df-dom 6459 df-fin 6460 df-pnf 7524 df-mnf 7525 df-xr 7526 df-ltxr 7527 df-le 7528 df-sub 7655 df-neg 7656 df-reap 8052 df-ap 8059 df-div 8140 df-inn 8423 df-2 8481 df-3 8482 df-4 8483 df-n0 8674 df-z 8751 df-uz 9020 df-q 9105 df-rp 9135 df-fz 9425 df-fzo 9554 df-iseq 9853 df-seq3 9854 df-exp 9955 df-ihash 10184 df-cj 10276 df-re 10277 df-im 10278 df-rsqrt 10431 df-abs 10432 df-clim 10667 df-isum 10743 |
This theorem is referenced by: geoisum1c 10914 geoihalfsum 10916 |
Copyright terms: Public domain | W3C validator |