| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2196 |
. . . . . 6
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 2 | | eqid 2196 |
. . . . . 6
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 3 | | eqid 2196 |
. . . . . 6
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 4 | | gsumfzsubmcl.g |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 5 | | gsumfzsubmcl.m |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 6 | | gsumfzsubmcl.n |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 7 | | gsumfzsubmcl.f |
. . . . . . 7
⊢ (𝜑 → 𝐹:(𝑀...𝑁)⟶𝑆) |
| 8 | | gsumsubmcl.s |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) |
| 9 | 1 | submss 13118 |
. . . . . . . 8
⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
| 10 | 8, 9 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ⊆ (Base‘𝐺)) |
| 11 | 7, 10 | fssd 5421 |
. . . . . 6
⊢ (𝜑 → 𝐹:(𝑀...𝑁)⟶(Base‘𝐺)) |
| 12 | 1, 2, 3, 4, 5, 6, 11 | gsumfzval 13044 |
. . . . 5
⊢ (𝜑 → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, (0g‘𝐺), (seq𝑀((+g‘𝐺), 𝐹)‘𝑁))) |
| 13 | 12 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, (0g‘𝐺), (seq𝑀((+g‘𝐺), 𝐹)‘𝑁))) |
| 14 | | simpr 110 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → 𝑁 < 𝑀) |
| 15 | 14 | iftrued 3569 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → if(𝑁 < 𝑀, (0g‘𝐺), (seq𝑀((+g‘𝐺), 𝐹)‘𝑁)) = (0g‘𝐺)) |
| 16 | 13, 15 | eqtrd 2229 |
. . 3
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → (𝐺 Σg 𝐹) = (0g‘𝐺)) |
| 17 | 2 | subm0cl 13120 |
. . . . 5
⊢ (𝑆 ∈ (SubMnd‘𝐺) →
(0g‘𝐺)
∈ 𝑆) |
| 18 | 8, 17 | syl 14 |
. . . 4
⊢ (𝜑 → (0g‘𝐺) ∈ 𝑆) |
| 19 | 18 | adantr 276 |
. . 3
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → (0g‘𝐺) ∈ 𝑆) |
| 20 | 16, 19 | eqeltrd 2273 |
. 2
⊢ ((𝜑 ∧ 𝑁 < 𝑀) → (𝐺 Σg 𝐹) ∈ 𝑆) |
| 21 | 12 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, (0g‘𝐺), (seq𝑀((+g‘𝐺), 𝐹)‘𝑁))) |
| 22 | | simpr 110 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → ¬ 𝑁 < 𝑀) |
| 23 | 22 | iffalsed 3572 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → if(𝑁 < 𝑀, (0g‘𝐺), (seq𝑀((+g‘𝐺), 𝐹)‘𝑁)) = (seq𝑀((+g‘𝐺), 𝐹)‘𝑁)) |
| 24 | 21, 23 | eqtrd 2229 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg 𝐹) = (seq𝑀((+g‘𝐺), 𝐹)‘𝑁)) |
| 25 | 5 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀 ∈ ℤ) |
| 26 | 6 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ ℤ) |
| 27 | 25 | zred 9450 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀 ∈ ℝ) |
| 28 | 26 | zred 9450 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ ℝ) |
| 29 | 27, 28, 22 | nltled 8149 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑀 ≤ 𝑁) |
| 30 | | eluz2 9609 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁)) |
| 31 | 25, 26, 29, 30 | syl3anbrc 1183 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 32 | 7 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝐹:(𝑀...𝑁)⟶𝑆) |
| 33 | 32 | ffvelcdmda 5698 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹‘𝑥) ∈ 𝑆) |
| 34 | 8 | ad2antrr 488 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑆 ∈ (SubMnd‘𝐺)) |
| 35 | | simprl 529 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑥 ∈ 𝑆) |
| 36 | | simprr 531 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑦 ∈ 𝑆) |
| 37 | 3 | submcl 13121 |
. . . . 5
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥(+g‘𝐺)𝑦) ∈ 𝑆) |
| 38 | 34, 35, 36, 37 | syl3anc 1249 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝑁 < 𝑀) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝑆) |
| 39 | 5, 6 | fzfigd 10525 |
. . . . . 6
⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) |
| 40 | 39 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝑀...𝑁) ∈ Fin) |
| 41 | 32, 40 | fexd 5793 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → 𝐹 ∈ V) |
| 42 | | plusgslid 12800 |
. . . . . . 7
⊢
(+g = Slot (+g‘ndx) ∧
(+g‘ndx) ∈ ℕ) |
| 43 | 42 | slotex 12715 |
. . . . . 6
⊢ (𝐺 ∈ Mnd →
(+g‘𝐺)
∈ V) |
| 44 | 4, 43 | syl 14 |
. . . . 5
⊢ (𝜑 → (+g‘𝐺) ∈ V) |
| 45 | 44 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (+g‘𝐺) ∈ V) |
| 46 | 31, 33, 38, 41, 45 | seqclg 10566 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (seq𝑀((+g‘𝐺), 𝐹)‘𝑁) ∈ 𝑆) |
| 47 | 24, 46 | eqeltrd 2273 |
. 2
⊢ ((𝜑 ∧ ¬ 𝑁 < 𝑀) → (𝐺 Σg 𝐹) ∈ 𝑆) |
| 48 | | zdclt 9405 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) →
DECID 𝑁 <
𝑀) |
| 49 | 6, 5, 48 | syl2anc 411 |
. . 3
⊢ (𝜑 → DECID 𝑁 < 𝑀) |
| 50 | | exmiddc 837 |
. . 3
⊢
(DECID 𝑁 < 𝑀 → (𝑁 < 𝑀 ∨ ¬ 𝑁 < 𝑀)) |
| 51 | 49, 50 | syl 14 |
. 2
⊢ (𝜑 → (𝑁 < 𝑀 ∨ ¬ 𝑁 < 𝑀)) |
| 52 | 20, 47, 51 | mpjaodan 799 |
1
⊢ (𝜑 → (𝐺 Σg 𝐹) ∈ 𝑆) |