ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgsoddprm Unicode version

Theorem 2lgsoddprm 15757
Description: The second supplement to the law of quadratic reciprocity for odd primes (common representation, see theorem 9.5 in [ApostolNT] p. 181): The Legendre symbol for  2 at an odd prime is minus one to the power of the square of the odd prime minus one divided by eight ( (
2  /L P ) = -1^(((P^2)-1)/8) ). (Contributed by AV, 20-Jul-2021.)
Assertion
Ref Expression
2lgsoddprm  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  /L
P )  =  (
-u 1 ^ (
( ( P ^
2 )  -  1 )  /  8 ) ) )

Proof of Theorem 2lgsoddprm
StepHypRef Expression
1 eldifi 3306 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  Prime )
2 prmz 12599 . . . . . . . . 9  |-  ( P  e.  Prime  ->  P  e.  ZZ )
31, 2syl 14 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  ZZ )
4 8nn 9246 . . . . . . . . 9  |-  8  e.  NN
54a1i 9 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
8  e.  NN )
63, 5zmodcld 10534 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  mod  8
)  e.  NN0 )
76nn0zd 9535 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  mod  8
)  e.  ZZ )
8 1zzd 9441 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
1  e.  ZZ )
9 zdceq 9490 . . . . . 6  |-  ( ( ( P  mod  8
)  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( P  mod  8 )  =  1 )
107, 8, 9syl2anc 411 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> DECID  ( P  mod  8 )  =  1 )
11 7nn 9245 . . . . . . . 8  |-  7  e.  NN
1211nnzi 9435 . . . . . . 7  |-  7  e.  ZZ
1312a1i 9 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
7  e.  ZZ )
14 zdceq 9490 . . . . . 6  |-  ( ( ( P  mod  8
)  e.  ZZ  /\  7  e.  ZZ )  -> DECID  ( P  mod  8 )  =  7 )
157, 13, 14syl2anc 411 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> DECID  ( P  mod  8 )  =  7 )
16 dcor 940 . . . . 5  |-  (DECID  ( P  mod  8 )  =  1  ->  (DECID  ( P  mod  8 )  =  7  -> DECID 
( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 ) ) )
1710, 15, 16sylc 62 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  -> DECID  (
( P  mod  8
)  =  1  \/  ( P  mod  8
)  =  7 ) )
18 elprg 3666 . . . . . 6  |-  ( ( P  mod  8 )  e.  NN0  ->  ( ( P  mod  8 )  e.  { 1 ,  7 }  <->  ( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 ) ) )
196, 18syl 14 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  mod  8 )  e.  {
1 ,  7 }  <-> 
( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 ) ) )
2019dcbid 842 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
(DECID  ( P  mod  8
)  e.  { 1 ,  7 }  <-> DECID  ( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 ) ) )
2117, 20mpbird 167 . . 3  |-  ( P  e.  ( Prime  \  {
2 } )  -> DECID  ( P  mod  8 )  e. 
{ 1 ,  7 } )
22 2lgs 15748 . . . 4  |-  ( P  e.  Prime  ->  ( ( 2  /L P )  =  1  <->  ( P  mod  8 )  e. 
{ 1 ,  7 } ) )
231, 22syl 14 . . 3  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( 2  /L P )  =  1  <->  ( P  mod  8 )  e.  {
1 ,  7 } ) )
24 simpl 109 . . . . . 6  |-  ( ( ( 2  /L
P )  =  1  /\  ( ( P  mod  8 )  e. 
{ 1 ,  7 }  /\  P  e.  ( Prime  \  { 2 } ) ) )  ->  ( 2  /L P )  =  1 )
25 eqcom 2211 . . . . . . . . . 10  |-  ( 1  =  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) )  <->  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) )  =  1 )
2625a1i 9 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 1  =  (
-u 1 ^ (
( ( P ^
2 )  -  1 )  /  8 ) )  <->  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) )  =  1 ) )
27 nnoddn2prm 12749 . . . . . . . . . . . 12  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  e.  NN  /\ 
-.  2  ||  P
) )
28 nnz 9433 . . . . . . . . . . . . 13  |-  ( P  e.  NN  ->  P  e.  ZZ )
2928anim1i 340 . . . . . . . . . . . 12  |-  ( ( P  e.  NN  /\  -.  2  ||  P )  ->  ( P  e.  ZZ  /\  -.  2  ||  P ) )
3027, 29syl 14 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  e.  ZZ  /\ 
-.  2  ||  P
) )
31 sqoddm1div8z 12363 . . . . . . . . . . 11  |-  ( ( P  e.  ZZ  /\  -.  2  ||  P )  ->  ( ( ( P ^ 2 )  -  1 )  / 
8 )  e.  ZZ )
3230, 31syl 14 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( ( P ^ 2 )  - 
1 )  /  8
)  e.  ZZ )
33 m1exp1 12378 . . . . . . . . . 10  |-  ( ( ( ( P ^
2 )  -  1 )  /  8 )  e.  ZZ  ->  (
( -u 1 ^ (
( ( P ^
2 )  -  1 )  /  8 ) )  =  1  <->  2 
||  ( ( ( P ^ 2 )  -  1 )  / 
8 ) ) )
3432, 33syl 14 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) )  =  1  <->  2  ||  (
( ( P ^
2 )  -  1 )  /  8 ) ) )
35 2lgsoddprmlem4 15756 . . . . . . . . . 10  |-  ( ( P  e.  ZZ  /\  -.  2  ||  P )  ->  ( 2  ||  ( ( ( P ^ 2 )  - 
1 )  /  8
)  <->  ( P  mod  8 )  e.  {
1 ,  7 } ) )
3630, 35syl 14 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  ||  (
( ( P ^
2 )  -  1 )  /  8 )  <-> 
( P  mod  8
)  e.  { 1 ,  7 } ) )
3726, 34, 363bitrd 214 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 1  =  (
-u 1 ^ (
( ( P ^
2 )  -  1 )  /  8 ) )  <->  ( P  mod  8 )  e.  {
1 ,  7 } ) )
3837biimparc 299 . . . . . . 7  |-  ( ( ( P  mod  8
)  e.  { 1 ,  7 }  /\  P  e.  ( Prime  \  { 2 } ) )  ->  1  =  ( -u 1 ^ (
( ( P ^
2 )  -  1 )  /  8 ) ) )
3938adantl 277 . . . . . 6  |-  ( ( ( 2  /L
P )  =  1  /\  ( ( P  mod  8 )  e. 
{ 1 ,  7 }  /\  P  e.  ( Prime  \  { 2 } ) ) )  ->  1  =  (
-u 1 ^ (
( ( P ^
2 )  -  1 )  /  8 ) ) )
4024, 39eqtrd 2242 . . . . 5  |-  ( ( ( 2  /L
P )  =  1  /\  ( ( P  mod  8 )  e. 
{ 1 ,  7 }  /\  P  e.  ( Prime  \  { 2 } ) ) )  ->  ( 2  /L P )  =  ( -u 1 ^ ( ( ( P ^ 2 )  - 
1 )  /  8
) ) )
4140exp32 365 . . . 4  |-  ( ( 2  /L P )  =  1  -> 
( ( P  mod  8 )  e.  {
1 ,  7 }  ->  ( P  e.  ( Prime  \  { 2 } )  ->  (
2  /L P )  =  ( -u
1 ^ ( ( ( P ^ 2 )  -  1 )  /  8 ) ) ) ) )
42 2z 9442 . . . . . . . 8  |-  2  e.  ZZ
43 lgscl1 15667 . . . . . . . 8  |-  ( ( 2  e.  ZZ  /\  P  e.  ZZ )  ->  ( 2  /L
P )  e.  { -u 1 ,  0 ,  1 } )
4442, 3, 43sylancr 414 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  /L
P )  e.  { -u 1 ,  0 ,  1 } )
45 eltpg 3691 . . . . . . . 8  |-  ( ( 2  /L P )  e.  { -u
1 ,  0 ,  1 }  ->  (
( 2  /L
P )  e.  { -u 1 ,  0 ,  1 }  <->  ( (
2  /L P )  =  -u 1  \/  ( 2  /L
P )  =  0  \/  ( 2  /L P )  =  1 ) ) )
4644, 45syl 14 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( 2  /L P )  e. 
{ -u 1 ,  0 ,  1 }  <->  ( (
2  /L P )  =  -u 1  \/  ( 2  /L
P )  =  0  \/  ( 2  /L P )  =  1 ) ) )
4744, 46mpbid 147 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( 2  /L P )  = 
-u 1  \/  (
2  /L P )  =  0  \/  ( 2  /L
P )  =  1 ) )
48 simpl 109 . . . . . . . . . 10  |-  ( ( ( 2  /L
P )  =  -u
1  /\  ( P  e.  ( Prime  \  { 2 } )  /\  -.  ( P  mod  8
)  e.  { 1 ,  7 } ) )  ->  ( 2  /L P )  =  -u 1 )
4936notbid 671 . . . . . . . . . . . . . 14  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( -.  2  ||  ( ( ( P ^ 2 )  - 
1 )  /  8
)  <->  -.  ( P  mod  8 )  e.  {
1 ,  7 } ) )
5049biimpar 297 . . . . . . . . . . . . 13  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  ( P  mod  8 )  e. 
{ 1 ,  7 } )  ->  -.  2  ||  ( ( ( P ^ 2 )  -  1 )  / 
8 ) )
51 m1expo 12377 . . . . . . . . . . . . 13  |-  ( ( ( ( ( P ^ 2 )  - 
1 )  /  8
)  e.  ZZ  /\  -.  2  ||  ( ( ( P ^ 2 )  -  1 )  /  8 ) )  ->  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) )  = 
-u 1 )
5232, 50, 51syl2an2r 597 . . . . . . . . . . . 12  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  ( P  mod  8 )  e. 
{ 1 ,  7 } )  ->  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  /  8 ) )  =  -u 1 )
5352eqcomd 2215 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  ( P  mod  8 )  e. 
{ 1 ,  7 } )  ->  -u 1  =  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) ) )
5453adantl 277 . . . . . . . . . 10  |-  ( ( ( 2  /L
P )  =  -u
1  /\  ( P  e.  ( Prime  \  { 2 } )  /\  -.  ( P  mod  8
)  e.  { 1 ,  7 } ) )  ->  -u 1  =  ( -u 1 ^ ( ( ( P ^ 2 )  - 
1 )  /  8
) ) )
5548, 54eqtrd 2242 . . . . . . . . 9  |-  ( ( ( 2  /L
P )  =  -u
1  /\  ( P  e.  ( Prime  \  { 2 } )  /\  -.  ( P  mod  8
)  e.  { 1 ,  7 } ) )  ->  ( 2  /L P )  =  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) ) )
5655a1d 22 . . . . . . . 8  |-  ( ( ( 2  /L
P )  =  -u
1  /\  ( P  e.  ( Prime  \  { 2 } )  /\  -.  ( P  mod  8
)  e.  { 1 ,  7 } ) )  ->  ( -.  ( 2  /L
P )  =  1  ->  ( 2  /L P )  =  ( -u 1 ^ ( ( ( P ^ 2 )  - 
1 )  /  8
) ) ) )
5756exp32 365 . . . . . . 7  |-  ( ( 2  /L P )  =  -u 1  ->  ( P  e.  ( Prime  \  { 2 } )  ->  ( -.  ( P  mod  8
)  e.  { 1 ,  7 }  ->  ( -.  ( 2  /L P )  =  1  ->  ( 2  /L P )  =  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) ) ) ) ) )
58 eldifsn 3774 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  <->  ( P  e.  Prime  /\  P  =/=  2 ) )
59 simpr 110 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  P  =/=  2 )  ->  P  =/=  2 )
6059necomd 2466 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  P  =/=  2 )  ->  2  =/=  P )
6158, 60sylbi 121 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
2  =/=  P )
62 2prm 12615 . . . . . . . . . . 11  |-  2  e.  Prime
63 prmrp 12633 . . . . . . . . . . 11  |-  ( ( 2  e.  Prime  /\  P  e.  Prime )  ->  (
( 2  gcd  P
)  =  1  <->  2  =/=  P ) )
6462, 1, 63sylancr 414 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( 2  gcd 
P )  =  1  <->  2  =/=  P ) )
6561, 64mpbird 167 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  gcd  P
)  =  1 )
66 lgsne0 15682 . . . . . . . . . 10  |-  ( ( 2  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( 2  /L P )  =/=  0  <->  ( 2  gcd 
P )  =  1 ) )
6742, 3, 66sylancr 414 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( 2  /L P )  =/=  0  <->  ( 2  gcd 
P )  =  1 ) )
6865, 67mpbird 167 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  /L
P )  =/=  0
)
69 eqneqall 2390 . . . . . . . 8  |-  ( ( 2  /L P )  =  0  -> 
( ( 2  /L P )  =/=  0  ->  ( -.  ( P  mod  8
)  e.  { 1 ,  7 }  ->  ( -.  ( 2  /L P )  =  1  ->  ( 2  /L P )  =  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) ) ) ) ) )
7068, 69syl5 32 . . . . . . 7  |-  ( ( 2  /L P )  =  0  -> 
( P  e.  ( Prime  \  { 2 } )  ->  ( -.  ( P  mod  8
)  e.  { 1 ,  7 }  ->  ( -.  ( 2  /L P )  =  1  ->  ( 2  /L P )  =  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) ) ) ) ) )
71 pm2.24 624 . . . . . . . 8  |-  ( ( 2  /L P )  =  1  -> 
( -.  ( 2  /L P )  =  1  ->  (
2  /L P )  =  ( -u
1 ^ ( ( ( P ^ 2 )  -  1 )  /  8 ) ) ) )
72712a1d 23 . . . . . . 7  |-  ( ( 2  /L P )  =  1  -> 
( P  e.  ( Prime  \  { 2 } )  ->  ( -.  ( P  mod  8
)  e.  { 1 ,  7 }  ->  ( -.  ( 2  /L P )  =  1  ->  ( 2  /L P )  =  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) ) ) ) ) )
7357, 70, 723jaoi 1318 . . . . . 6  |-  ( ( ( 2  /L
P )  =  -u
1  \/  ( 2  /L P )  =  0  \/  (
2  /L P )  =  1 )  ->  ( P  e.  ( Prime  \  { 2 } )  ->  ( -.  ( P  mod  8
)  e.  { 1 ,  7 }  ->  ( -.  ( 2  /L P )  =  1  ->  ( 2  /L P )  =  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) ) ) ) ) )
7447, 73mpcom 36 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( -.  ( P  mod  8 )  e. 
{ 1 ,  7 }  ->  ( -.  ( 2  /L
P )  =  1  ->  ( 2  /L P )  =  ( -u 1 ^ ( ( ( P ^ 2 )  - 
1 )  /  8
) ) ) ) )
7574com13 80 . . . 4  |-  ( -.  ( 2  /L
P )  =  1  ->  ( -.  ( P  mod  8 )  e. 
{ 1 ,  7 }  ->  ( P  e.  ( Prime  \  { 2 } )  ->  (
2  /L P )  =  ( -u
1 ^ ( ( ( P ^ 2 )  -  1 )  /  8 ) ) ) ) )
7641, 75bijadc 886 . . 3  |-  (DECID  ( P  mod  8 )  e. 
{ 1 ,  7 }  ->  ( (
( 2  /L
P )  =  1  <-> 
( P  mod  8
)  e.  { 1 ,  7 } )  ->  ( P  e.  ( Prime  \  { 2 } )  ->  (
2  /L P )  =  ( -u
1 ^ ( ( ( P ^ 2 )  -  1 )  /  8 ) ) ) ) )
7721, 23, 76sylc 62 . 2  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  e.  ( Prime  \  { 2 } )  ->  (
2  /L P )  =  ( -u
1 ^ ( ( ( P ^ 2 )  -  1 )  /  8 ) ) ) )
7877pm2.43i 49 1  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  /L
P )  =  (
-u 1 ^ (
( ( P ^
2 )  -  1 )  /  8 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 712  DECID wdc 838    \/ w3o 982    = wceq 1375    e. wcel 2180    =/= wne 2380    \ cdif 3174   {csn 3646   {cpr 3647   {ctp 3648   class class class wbr 4062  (class class class)co 5974   0cc0 7967   1c1 7968    - cmin 8285   -ucneg 8286    / cdiv 8787   NNcn 9078   2c2 9129   7c7 9134   8c8 9135   NN0cn0 9337   ZZcz 9414    mod cmo 10511   ^cexp 10727    || cdvds 12264    gcd cgcd 12440   Primecprime 12595    /Lclgs 15641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-stab 835  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-xor 1398  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-tp 3654  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-2o 6533  df-oadd 6536  df-er 6650  df-en 6858  df-dom 6859  df-fin 6860  df-sup 7119  df-inf 7120  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-ioo 10056  df-ico 10058  df-fz 10173  df-fzo 10307  df-fl 10457  df-mod 10512  df-seqfrec 10637  df-exp 10728  df-fac 10915  df-ihash 10965  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-clim 11756  df-proddc 12028  df-dvds 12265  df-gcd 12441  df-prm 12596  df-phi 12699  df-pc 12774  df-lgs 15642
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator