| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2lgsoddprm | Unicode version | ||
| Description: The second supplement to
the law of quadratic reciprocity for odd primes
(common representation, see theorem 9.5 in [ApostolNT] p. 181): The
Legendre symbol for |
| Ref | Expression |
|---|---|
| 2lgsoddprm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi 3326 |
. . . . . . . . 9
| |
| 2 | prmz 12641 |
. . . . . . . . 9
| |
| 3 | 1, 2 | syl 14 |
. . . . . . . 8
|
| 4 | 8nn 9286 |
. . . . . . . . 9
| |
| 5 | 4 | a1i 9 |
. . . . . . . 8
|
| 6 | 3, 5 | zmodcld 10575 |
. . . . . . 7
|
| 7 | 6 | nn0zd 9575 |
. . . . . 6
|
| 8 | 1zzd 9481 |
. . . . . 6
| |
| 9 | zdceq 9530 |
. . . . . 6
| |
| 10 | 7, 8, 9 | syl2anc 411 |
. . . . 5
|
| 11 | 7nn 9285 |
. . . . . . . 8
| |
| 12 | 11 | nnzi 9475 |
. . . . . . 7
|
| 13 | 12 | a1i 9 |
. . . . . 6
|
| 14 | zdceq 9530 |
. . . . . 6
| |
| 15 | 7, 13, 14 | syl2anc 411 |
. . . . 5
|
| 16 | dcor 941 |
. . . . 5
| |
| 17 | 10, 15, 16 | sylc 62 |
. . . 4
|
| 18 | elprg 3686 |
. . . . . 6
| |
| 19 | 6, 18 | syl 14 |
. . . . 5
|
| 20 | 19 | dcbid 843 |
. . . 4
|
| 21 | 17, 20 | mpbird 167 |
. . 3
|
| 22 | 2lgs 15791 |
. . . 4
| |
| 23 | 1, 22 | syl 14 |
. . 3
|
| 24 | simpl 109 |
. . . . . 6
| |
| 25 | eqcom 2231 |
. . . . . . . . . 10
| |
| 26 | 25 | a1i 9 |
. . . . . . . . 9
|
| 27 | nnoddn2prm 12791 |
. . . . . . . . . . . 12
| |
| 28 | nnz 9473 |
. . . . . . . . . . . . 13
| |
| 29 | 28 | anim1i 340 |
. . . . . . . . . . . 12
|
| 30 | 27, 29 | syl 14 |
. . . . . . . . . . 11
|
| 31 | sqoddm1div8z 12405 |
. . . . . . . . . . 11
| |
| 32 | 30, 31 | syl 14 |
. . . . . . . . . 10
|
| 33 | m1exp1 12420 |
. . . . . . . . . 10
| |
| 34 | 32, 33 | syl 14 |
. . . . . . . . 9
|
| 35 | 2lgsoddprmlem4 15799 |
. . . . . . . . . 10
| |
| 36 | 30, 35 | syl 14 |
. . . . . . . . 9
|
| 37 | 26, 34, 36 | 3bitrd 214 |
. . . . . . . 8
|
| 38 | 37 | biimparc 299 |
. . . . . . 7
|
| 39 | 38 | adantl 277 |
. . . . . 6
|
| 40 | 24, 39 | eqtrd 2262 |
. . . . 5
|
| 41 | 40 | exp32 365 |
. . . 4
|
| 42 | 2z 9482 |
. . . . . . . 8
| |
| 43 | lgscl1 15710 |
. . . . . . . 8
| |
| 44 | 42, 3, 43 | sylancr 414 |
. . . . . . 7
|
| 45 | eltpg 3711 |
. . . . . . . 8
| |
| 46 | 44, 45 | syl 14 |
. . . . . . 7
|
| 47 | 44, 46 | mpbid 147 |
. . . . . 6
|
| 48 | simpl 109 |
. . . . . . . . . 10
| |
| 49 | 36 | notbid 671 |
. . . . . . . . . . . . . 14
|
| 50 | 49 | biimpar 297 |
. . . . . . . . . . . . 13
|
| 51 | m1expo 12419 |
. . . . . . . . . . . . 13
| |
| 52 | 32, 50, 51 | syl2an2r 597 |
. . . . . . . . . . . 12
|
| 53 | 52 | eqcomd 2235 |
. . . . . . . . . . 11
|
| 54 | 53 | adantl 277 |
. . . . . . . . . 10
|
| 55 | 48, 54 | eqtrd 2262 |
. . . . . . . . 9
|
| 56 | 55 | a1d 22 |
. . . . . . . 8
|
| 57 | 56 | exp32 365 |
. . . . . . 7
|
| 58 | eldifsn 3795 |
. . . . . . . . . . 11
| |
| 59 | simpr 110 |
. . . . . . . . . . . 12
| |
| 60 | 59 | necomd 2486 |
. . . . . . . . . . 11
|
| 61 | 58, 60 | sylbi 121 |
. . . . . . . . . 10
|
| 62 | 2prm 12657 |
. . . . . . . . . . 11
| |
| 63 | prmrp 12675 |
. . . . . . . . . . 11
| |
| 64 | 62, 1, 63 | sylancr 414 |
. . . . . . . . . 10
|
| 65 | 61, 64 | mpbird 167 |
. . . . . . . . 9
|
| 66 | lgsne0 15725 |
. . . . . . . . . 10
| |
| 67 | 42, 3, 66 | sylancr 414 |
. . . . . . . . 9
|
| 68 | 65, 67 | mpbird 167 |
. . . . . . . 8
|
| 69 | eqneqall 2410 |
. . . . . . . 8
| |
| 70 | 68, 69 | syl5 32 |
. . . . . . 7
|
| 71 | pm2.24 624 |
. . . . . . . 8
| |
| 72 | 71 | 2a1d 23 |
. . . . . . 7
|
| 73 | 57, 70, 72 | 3jaoi 1337 |
. . . . . 6
|
| 74 | 47, 73 | mpcom 36 |
. . . . 5
|
| 75 | 74 | com13 80 |
. . . 4
|
| 76 | 41, 75 | bijadc 887 |
. . 3
|
| 77 | 21, 23, 76 | sylc 62 |
. 2
|
| 78 | 77 | pm2.43i 49 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 ax-caucvg 8127 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-xor 1418 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-irdg 6522 df-frec 6543 df-1o 6568 df-2o 6569 df-oadd 6572 df-er 6688 df-en 6896 df-dom 6897 df-fin 6898 df-sup 7159 df-inf 7160 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-z 9455 df-uz 9731 df-q 9823 df-rp 9858 df-ioo 10096 df-ico 10098 df-fz 10213 df-fzo 10347 df-fl 10498 df-mod 10553 df-seqfrec 10678 df-exp 10769 df-fac 10956 df-ihash 11006 df-cj 11361 df-re 11362 df-im 11363 df-rsqrt 11517 df-abs 11518 df-clim 11798 df-proddc 12070 df-dvds 12307 df-gcd 12483 df-prm 12638 df-phi 12741 df-pc 12816 df-lgs 15685 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |