ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgsoddprm Unicode version

Theorem 2lgsoddprm 15800
Description: The second supplement to the law of quadratic reciprocity for odd primes (common representation, see theorem 9.5 in [ApostolNT] p. 181): The Legendre symbol for  2 at an odd prime is minus one to the power of the square of the odd prime minus one divided by eight ( (
2  /L P ) = -1^(((P^2)-1)/8) ). (Contributed by AV, 20-Jul-2021.)
Assertion
Ref Expression
2lgsoddprm  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  /L
P )  =  (
-u 1 ^ (
( ( P ^
2 )  -  1 )  /  8 ) ) )

Proof of Theorem 2lgsoddprm
StepHypRef Expression
1 eldifi 3326 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  Prime )
2 prmz 12641 . . . . . . . . 9  |-  ( P  e.  Prime  ->  P  e.  ZZ )
31, 2syl 14 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  ZZ )
4 8nn 9286 . . . . . . . . 9  |-  8  e.  NN
54a1i 9 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
8  e.  NN )
63, 5zmodcld 10575 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  mod  8
)  e.  NN0 )
76nn0zd 9575 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  mod  8
)  e.  ZZ )
8 1zzd 9481 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
1  e.  ZZ )
9 zdceq 9530 . . . . . 6  |-  ( ( ( P  mod  8
)  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( P  mod  8 )  =  1 )
107, 8, 9syl2anc 411 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> DECID  ( P  mod  8 )  =  1 )
11 7nn 9285 . . . . . . . 8  |-  7  e.  NN
1211nnzi 9475 . . . . . . 7  |-  7  e.  ZZ
1312a1i 9 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
7  e.  ZZ )
14 zdceq 9530 . . . . . 6  |-  ( ( ( P  mod  8
)  e.  ZZ  /\  7  e.  ZZ )  -> DECID  ( P  mod  8 )  =  7 )
157, 13, 14syl2anc 411 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> DECID  ( P  mod  8 )  =  7 )
16 dcor 941 . . . . 5  |-  (DECID  ( P  mod  8 )  =  1  ->  (DECID  ( P  mod  8 )  =  7  -> DECID 
( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 ) ) )
1710, 15, 16sylc 62 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  -> DECID  (
( P  mod  8
)  =  1  \/  ( P  mod  8
)  =  7 ) )
18 elprg 3686 . . . . . 6  |-  ( ( P  mod  8 )  e.  NN0  ->  ( ( P  mod  8 )  e.  { 1 ,  7 }  <->  ( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 ) ) )
196, 18syl 14 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  mod  8 )  e.  {
1 ,  7 }  <-> 
( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 ) ) )
2019dcbid 843 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
(DECID  ( P  mod  8
)  e.  { 1 ,  7 }  <-> DECID  ( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 ) ) )
2117, 20mpbird 167 . . 3  |-  ( P  e.  ( Prime  \  {
2 } )  -> DECID  ( P  mod  8 )  e. 
{ 1 ,  7 } )
22 2lgs 15791 . . . 4  |-  ( P  e.  Prime  ->  ( ( 2  /L P )  =  1  <->  ( P  mod  8 )  e. 
{ 1 ,  7 } ) )
231, 22syl 14 . . 3  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( 2  /L P )  =  1  <->  ( P  mod  8 )  e.  {
1 ,  7 } ) )
24 simpl 109 . . . . . 6  |-  ( ( ( 2  /L
P )  =  1  /\  ( ( P  mod  8 )  e. 
{ 1 ,  7 }  /\  P  e.  ( Prime  \  { 2 } ) ) )  ->  ( 2  /L P )  =  1 )
25 eqcom 2231 . . . . . . . . . 10  |-  ( 1  =  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) )  <->  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) )  =  1 )
2625a1i 9 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 1  =  (
-u 1 ^ (
( ( P ^
2 )  -  1 )  /  8 ) )  <->  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) )  =  1 ) )
27 nnoddn2prm 12791 . . . . . . . . . . . 12  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  e.  NN  /\ 
-.  2  ||  P
) )
28 nnz 9473 . . . . . . . . . . . . 13  |-  ( P  e.  NN  ->  P  e.  ZZ )
2928anim1i 340 . . . . . . . . . . . 12  |-  ( ( P  e.  NN  /\  -.  2  ||  P )  ->  ( P  e.  ZZ  /\  -.  2  ||  P ) )
3027, 29syl 14 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  e.  ZZ  /\ 
-.  2  ||  P
) )
31 sqoddm1div8z 12405 . . . . . . . . . . 11  |-  ( ( P  e.  ZZ  /\  -.  2  ||  P )  ->  ( ( ( P ^ 2 )  -  1 )  / 
8 )  e.  ZZ )
3230, 31syl 14 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( ( P ^ 2 )  - 
1 )  /  8
)  e.  ZZ )
33 m1exp1 12420 . . . . . . . . . 10  |-  ( ( ( ( P ^
2 )  -  1 )  /  8 )  e.  ZZ  ->  (
( -u 1 ^ (
( ( P ^
2 )  -  1 )  /  8 ) )  =  1  <->  2 
||  ( ( ( P ^ 2 )  -  1 )  / 
8 ) ) )
3432, 33syl 14 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) )  =  1  <->  2  ||  (
( ( P ^
2 )  -  1 )  /  8 ) ) )
35 2lgsoddprmlem4 15799 . . . . . . . . . 10  |-  ( ( P  e.  ZZ  /\  -.  2  ||  P )  ->  ( 2  ||  ( ( ( P ^ 2 )  - 
1 )  /  8
)  <->  ( P  mod  8 )  e.  {
1 ,  7 } ) )
3630, 35syl 14 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  ||  (
( ( P ^
2 )  -  1 )  /  8 )  <-> 
( P  mod  8
)  e.  { 1 ,  7 } ) )
3726, 34, 363bitrd 214 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 1  =  (
-u 1 ^ (
( ( P ^
2 )  -  1 )  /  8 ) )  <->  ( P  mod  8 )  e.  {
1 ,  7 } ) )
3837biimparc 299 . . . . . . 7  |-  ( ( ( P  mod  8
)  e.  { 1 ,  7 }  /\  P  e.  ( Prime  \  { 2 } ) )  ->  1  =  ( -u 1 ^ (
( ( P ^
2 )  -  1 )  /  8 ) ) )
3938adantl 277 . . . . . 6  |-  ( ( ( 2  /L
P )  =  1  /\  ( ( P  mod  8 )  e. 
{ 1 ,  7 }  /\  P  e.  ( Prime  \  { 2 } ) ) )  ->  1  =  (
-u 1 ^ (
( ( P ^
2 )  -  1 )  /  8 ) ) )
4024, 39eqtrd 2262 . . . . 5  |-  ( ( ( 2  /L
P )  =  1  /\  ( ( P  mod  8 )  e. 
{ 1 ,  7 }  /\  P  e.  ( Prime  \  { 2 } ) ) )  ->  ( 2  /L P )  =  ( -u 1 ^ ( ( ( P ^ 2 )  - 
1 )  /  8
) ) )
4140exp32 365 . . . 4  |-  ( ( 2  /L P )  =  1  -> 
( ( P  mod  8 )  e.  {
1 ,  7 }  ->  ( P  e.  ( Prime  \  { 2 } )  ->  (
2  /L P )  =  ( -u
1 ^ ( ( ( P ^ 2 )  -  1 )  /  8 ) ) ) ) )
42 2z 9482 . . . . . . . 8  |-  2  e.  ZZ
43 lgscl1 15710 . . . . . . . 8  |-  ( ( 2  e.  ZZ  /\  P  e.  ZZ )  ->  ( 2  /L
P )  e.  { -u 1 ,  0 ,  1 } )
4442, 3, 43sylancr 414 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  /L
P )  e.  { -u 1 ,  0 ,  1 } )
45 eltpg 3711 . . . . . . . 8  |-  ( ( 2  /L P )  e.  { -u
1 ,  0 ,  1 }  ->  (
( 2  /L
P )  e.  { -u 1 ,  0 ,  1 }  <->  ( (
2  /L P )  =  -u 1  \/  ( 2  /L
P )  =  0  \/  ( 2  /L P )  =  1 ) ) )
4644, 45syl 14 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( 2  /L P )  e. 
{ -u 1 ,  0 ,  1 }  <->  ( (
2  /L P )  =  -u 1  \/  ( 2  /L
P )  =  0  \/  ( 2  /L P )  =  1 ) ) )
4744, 46mpbid 147 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( 2  /L P )  = 
-u 1  \/  (
2  /L P )  =  0  \/  ( 2  /L
P )  =  1 ) )
48 simpl 109 . . . . . . . . . 10  |-  ( ( ( 2  /L
P )  =  -u
1  /\  ( P  e.  ( Prime  \  { 2 } )  /\  -.  ( P  mod  8
)  e.  { 1 ,  7 } ) )  ->  ( 2  /L P )  =  -u 1 )
4936notbid 671 . . . . . . . . . . . . . 14  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( -.  2  ||  ( ( ( P ^ 2 )  - 
1 )  /  8
)  <->  -.  ( P  mod  8 )  e.  {
1 ,  7 } ) )
5049biimpar 297 . . . . . . . . . . . . 13  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  ( P  mod  8 )  e. 
{ 1 ,  7 } )  ->  -.  2  ||  ( ( ( P ^ 2 )  -  1 )  / 
8 ) )
51 m1expo 12419 . . . . . . . . . . . . 13  |-  ( ( ( ( ( P ^ 2 )  - 
1 )  /  8
)  e.  ZZ  /\  -.  2  ||  ( ( ( P ^ 2 )  -  1 )  /  8 ) )  ->  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) )  = 
-u 1 )
5232, 50, 51syl2an2r 597 . . . . . . . . . . . 12  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  ( P  mod  8 )  e. 
{ 1 ,  7 } )  ->  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  /  8 ) )  =  -u 1 )
5352eqcomd 2235 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  ( P  mod  8 )  e. 
{ 1 ,  7 } )  ->  -u 1  =  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) ) )
5453adantl 277 . . . . . . . . . 10  |-  ( ( ( 2  /L
P )  =  -u
1  /\  ( P  e.  ( Prime  \  { 2 } )  /\  -.  ( P  mod  8
)  e.  { 1 ,  7 } ) )  ->  -u 1  =  ( -u 1 ^ ( ( ( P ^ 2 )  - 
1 )  /  8
) ) )
5548, 54eqtrd 2262 . . . . . . . . 9  |-  ( ( ( 2  /L
P )  =  -u
1  /\  ( P  e.  ( Prime  \  { 2 } )  /\  -.  ( P  mod  8
)  e.  { 1 ,  7 } ) )  ->  ( 2  /L P )  =  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) ) )
5655a1d 22 . . . . . . . 8  |-  ( ( ( 2  /L
P )  =  -u
1  /\  ( P  e.  ( Prime  \  { 2 } )  /\  -.  ( P  mod  8
)  e.  { 1 ,  7 } ) )  ->  ( -.  ( 2  /L
P )  =  1  ->  ( 2  /L P )  =  ( -u 1 ^ ( ( ( P ^ 2 )  - 
1 )  /  8
) ) ) )
5756exp32 365 . . . . . . 7  |-  ( ( 2  /L P )  =  -u 1  ->  ( P  e.  ( Prime  \  { 2 } )  ->  ( -.  ( P  mod  8
)  e.  { 1 ,  7 }  ->  ( -.  ( 2  /L P )  =  1  ->  ( 2  /L P )  =  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) ) ) ) ) )
58 eldifsn 3795 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  <->  ( P  e.  Prime  /\  P  =/=  2 ) )
59 simpr 110 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  P  =/=  2 )  ->  P  =/=  2 )
6059necomd 2486 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  P  =/=  2 )  ->  2  =/=  P )
6158, 60sylbi 121 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
2  =/=  P )
62 2prm 12657 . . . . . . . . . . 11  |-  2  e.  Prime
63 prmrp 12675 . . . . . . . . . . 11  |-  ( ( 2  e.  Prime  /\  P  e.  Prime )  ->  (
( 2  gcd  P
)  =  1  <->  2  =/=  P ) )
6462, 1, 63sylancr 414 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( 2  gcd 
P )  =  1  <->  2  =/=  P ) )
6561, 64mpbird 167 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  gcd  P
)  =  1 )
66 lgsne0 15725 . . . . . . . . . 10  |-  ( ( 2  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( 2  /L P )  =/=  0  <->  ( 2  gcd 
P )  =  1 ) )
6742, 3, 66sylancr 414 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( 2  /L P )  =/=  0  <->  ( 2  gcd 
P )  =  1 ) )
6865, 67mpbird 167 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  /L
P )  =/=  0
)
69 eqneqall 2410 . . . . . . . 8  |-  ( ( 2  /L P )  =  0  -> 
( ( 2  /L P )  =/=  0  ->  ( -.  ( P  mod  8
)  e.  { 1 ,  7 }  ->  ( -.  ( 2  /L P )  =  1  ->  ( 2  /L P )  =  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) ) ) ) ) )
7068, 69syl5 32 . . . . . . 7  |-  ( ( 2  /L P )  =  0  -> 
( P  e.  ( Prime  \  { 2 } )  ->  ( -.  ( P  mod  8
)  e.  { 1 ,  7 }  ->  ( -.  ( 2  /L P )  =  1  ->  ( 2  /L P )  =  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) ) ) ) ) )
71 pm2.24 624 . . . . . . . 8  |-  ( ( 2  /L P )  =  1  -> 
( -.  ( 2  /L P )  =  1  ->  (
2  /L P )  =  ( -u
1 ^ ( ( ( P ^ 2 )  -  1 )  /  8 ) ) ) )
72712a1d 23 . . . . . . 7  |-  ( ( 2  /L P )  =  1  -> 
( P  e.  ( Prime  \  { 2 } )  ->  ( -.  ( P  mod  8
)  e.  { 1 ,  7 }  ->  ( -.  ( 2  /L P )  =  1  ->  ( 2  /L P )  =  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) ) ) ) ) )
7357, 70, 723jaoi 1337 . . . . . 6  |-  ( ( ( 2  /L
P )  =  -u
1  \/  ( 2  /L P )  =  0  \/  (
2  /L P )  =  1 )  ->  ( P  e.  ( Prime  \  { 2 } )  ->  ( -.  ( P  mod  8
)  e.  { 1 ,  7 }  ->  ( -.  ( 2  /L P )  =  1  ->  ( 2  /L P )  =  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) ) ) ) ) )
7447, 73mpcom 36 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( -.  ( P  mod  8 )  e. 
{ 1 ,  7 }  ->  ( -.  ( 2  /L
P )  =  1  ->  ( 2  /L P )  =  ( -u 1 ^ ( ( ( P ^ 2 )  - 
1 )  /  8
) ) ) ) )
7574com13 80 . . . 4  |-  ( -.  ( 2  /L
P )  =  1  ->  ( -.  ( P  mod  8 )  e. 
{ 1 ,  7 }  ->  ( P  e.  ( Prime  \  { 2 } )  ->  (
2  /L P )  =  ( -u
1 ^ ( ( ( P ^ 2 )  -  1 )  /  8 ) ) ) ) )
7641, 75bijadc 887 . . 3  |-  (DECID  ( P  mod  8 )  e. 
{ 1 ,  7 }  ->  ( (
( 2  /L
P )  =  1  <-> 
( P  mod  8
)  e.  { 1 ,  7 } )  ->  ( P  e.  ( Prime  \  { 2 } )  ->  (
2  /L P )  =  ( -u
1 ^ ( ( ( P ^ 2 )  -  1 )  /  8 ) ) ) ) )
7721, 23, 76sylc 62 . 2  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  e.  ( Prime  \  { 2 } )  ->  (
2  /L P )  =  ( -u
1 ^ ( ( ( P ^ 2 )  -  1 )  /  8 ) ) ) )
7877pm2.43i 49 1  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  /L
P )  =  (
-u 1 ^ (
( ( P ^
2 )  -  1 )  /  8 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839    \/ w3o 1001    = wceq 1395    e. wcel 2200    =/= wne 2400    \ cdif 3194   {csn 3666   {cpr 3667   {ctp 3668   class class class wbr 4083  (class class class)co 6007   0cc0 8007   1c1 8008    - cmin 8325   -ucneg 8326    / cdiv 8827   NNcn 9118   2c2 9169   7c7 9174   8c8 9175   NN0cn0 9377   ZZcz 9454    mod cmo 10552   ^cexp 10768    || cdvds 12306    gcd cgcd 12482   Primecprime 12637    /Lclgs 15684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-xor 1418  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-2o 6569  df-oadd 6572  df-er 6688  df-en 6896  df-dom 6897  df-fin 6898  df-sup 7159  df-inf 7160  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-ioo 10096  df-ico 10098  df-fz 10213  df-fzo 10347  df-fl 10498  df-mod 10553  df-seqfrec 10678  df-exp 10769  df-fac 10956  df-ihash 11006  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-clim 11798  df-proddc 12070  df-dvds 12307  df-gcd 12483  df-prm 12638  df-phi 12741  df-pc 12816  df-lgs 15685
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator