ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgsoddprm Unicode version

Theorem 2lgsoddprm 15634
Description: The second supplement to the law of quadratic reciprocity for odd primes (common representation, see theorem 9.5 in [ApostolNT] p. 181): The Legendre symbol for  2 at an odd prime is minus one to the power of the square of the odd prime minus one divided by eight ( (
2  /L P ) = -1^(((P^2)-1)/8) ). (Contributed by AV, 20-Jul-2021.)
Assertion
Ref Expression
2lgsoddprm  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  /L
P )  =  (
-u 1 ^ (
( ( P ^
2 )  -  1 )  /  8 ) ) )

Proof of Theorem 2lgsoddprm
StepHypRef Expression
1 eldifi 3296 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  Prime )
2 prmz 12477 . . . . . . . . 9  |-  ( P  e.  Prime  ->  P  e.  ZZ )
31, 2syl 14 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  ZZ )
4 8nn 9211 . . . . . . . . 9  |-  8  e.  NN
54a1i 9 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
8  e.  NN )
63, 5zmodcld 10497 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  mod  8
)  e.  NN0 )
76nn0zd 9500 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  mod  8
)  e.  ZZ )
8 1zzd 9406 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
1  e.  ZZ )
9 zdceq 9455 . . . . . 6  |-  ( ( ( P  mod  8
)  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( P  mod  8 )  =  1 )
107, 8, 9syl2anc 411 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> DECID  ( P  mod  8 )  =  1 )
11 7nn 9210 . . . . . . . 8  |-  7  e.  NN
1211nnzi 9400 . . . . . . 7  |-  7  e.  ZZ
1312a1i 9 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
7  e.  ZZ )
14 zdceq 9455 . . . . . 6  |-  ( ( ( P  mod  8
)  e.  ZZ  /\  7  e.  ZZ )  -> DECID  ( P  mod  8 )  =  7 )
157, 13, 14syl2anc 411 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> DECID  ( P  mod  8 )  =  7 )
16 dcor 938 . . . . 5  |-  (DECID  ( P  mod  8 )  =  1  ->  (DECID  ( P  mod  8 )  =  7  -> DECID 
( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 ) ) )
1710, 15, 16sylc 62 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  -> DECID  (
( P  mod  8
)  =  1  \/  ( P  mod  8
)  =  7 ) )
18 elprg 3654 . . . . . 6  |-  ( ( P  mod  8 )  e.  NN0  ->  ( ( P  mod  8 )  e.  { 1 ,  7 }  <->  ( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 ) ) )
196, 18syl 14 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  mod  8 )  e.  {
1 ,  7 }  <-> 
( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 ) ) )
2019dcbid 840 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
(DECID  ( P  mod  8
)  e.  { 1 ,  7 }  <-> DECID  ( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 ) ) )
2117, 20mpbird 167 . . 3  |-  ( P  e.  ( Prime  \  {
2 } )  -> DECID  ( P  mod  8 )  e. 
{ 1 ,  7 } )
22 2lgs 15625 . . . 4  |-  ( P  e.  Prime  ->  ( ( 2  /L P )  =  1  <->  ( P  mod  8 )  e. 
{ 1 ,  7 } ) )
231, 22syl 14 . . 3  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( 2  /L P )  =  1  <->  ( P  mod  8 )  e.  {
1 ,  7 } ) )
24 simpl 109 . . . . . 6  |-  ( ( ( 2  /L
P )  =  1  /\  ( ( P  mod  8 )  e. 
{ 1 ,  7 }  /\  P  e.  ( Prime  \  { 2 } ) ) )  ->  ( 2  /L P )  =  1 )
25 eqcom 2208 . . . . . . . . . 10  |-  ( 1  =  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) )  <->  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) )  =  1 )
2625a1i 9 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 1  =  (
-u 1 ^ (
( ( P ^
2 )  -  1 )  /  8 ) )  <->  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) )  =  1 ) )
27 nnoddn2prm 12627 . . . . . . . . . . . 12  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  e.  NN  /\ 
-.  2  ||  P
) )
28 nnz 9398 . . . . . . . . . . . . 13  |-  ( P  e.  NN  ->  P  e.  ZZ )
2928anim1i 340 . . . . . . . . . . . 12  |-  ( ( P  e.  NN  /\  -.  2  ||  P )  ->  ( P  e.  ZZ  /\  -.  2  ||  P ) )
3027, 29syl 14 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  e.  ZZ  /\ 
-.  2  ||  P
) )
31 sqoddm1div8z 12241 . . . . . . . . . . 11  |-  ( ( P  e.  ZZ  /\  -.  2  ||  P )  ->  ( ( ( P ^ 2 )  -  1 )  / 
8 )  e.  ZZ )
3230, 31syl 14 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( ( P ^ 2 )  - 
1 )  /  8
)  e.  ZZ )
33 m1exp1 12256 . . . . . . . . . 10  |-  ( ( ( ( P ^
2 )  -  1 )  /  8 )  e.  ZZ  ->  (
( -u 1 ^ (
( ( P ^
2 )  -  1 )  /  8 ) )  =  1  <->  2 
||  ( ( ( P ^ 2 )  -  1 )  / 
8 ) ) )
3432, 33syl 14 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) )  =  1  <->  2  ||  (
( ( P ^
2 )  -  1 )  /  8 ) ) )
35 2lgsoddprmlem4 15633 . . . . . . . . . 10  |-  ( ( P  e.  ZZ  /\  -.  2  ||  P )  ->  ( 2  ||  ( ( ( P ^ 2 )  - 
1 )  /  8
)  <->  ( P  mod  8 )  e.  {
1 ,  7 } ) )
3630, 35syl 14 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  ||  (
( ( P ^
2 )  -  1 )  /  8 )  <-> 
( P  mod  8
)  e.  { 1 ,  7 } ) )
3726, 34, 363bitrd 214 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 1  =  (
-u 1 ^ (
( ( P ^
2 )  -  1 )  /  8 ) )  <->  ( P  mod  8 )  e.  {
1 ,  7 } ) )
3837biimparc 299 . . . . . . 7  |-  ( ( ( P  mod  8
)  e.  { 1 ,  7 }  /\  P  e.  ( Prime  \  { 2 } ) )  ->  1  =  ( -u 1 ^ (
( ( P ^
2 )  -  1 )  /  8 ) ) )
3938adantl 277 . . . . . 6  |-  ( ( ( 2  /L
P )  =  1  /\  ( ( P  mod  8 )  e. 
{ 1 ,  7 }  /\  P  e.  ( Prime  \  { 2 } ) ) )  ->  1  =  (
-u 1 ^ (
( ( P ^
2 )  -  1 )  /  8 ) ) )
4024, 39eqtrd 2239 . . . . 5  |-  ( ( ( 2  /L
P )  =  1  /\  ( ( P  mod  8 )  e. 
{ 1 ,  7 }  /\  P  e.  ( Prime  \  { 2 } ) ) )  ->  ( 2  /L P )  =  ( -u 1 ^ ( ( ( P ^ 2 )  - 
1 )  /  8
) ) )
4140exp32 365 . . . 4  |-  ( ( 2  /L P )  =  1  -> 
( ( P  mod  8 )  e.  {
1 ,  7 }  ->  ( P  e.  ( Prime  \  { 2 } )  ->  (
2  /L P )  =  ( -u
1 ^ ( ( ( P ^ 2 )  -  1 )  /  8 ) ) ) ) )
42 2z 9407 . . . . . . . 8  |-  2  e.  ZZ
43 lgscl1 15544 . . . . . . . 8  |-  ( ( 2  e.  ZZ  /\  P  e.  ZZ )  ->  ( 2  /L
P )  e.  { -u 1 ,  0 ,  1 } )
4442, 3, 43sylancr 414 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  /L
P )  e.  { -u 1 ,  0 ,  1 } )
45 eltpg 3679 . . . . . . . 8  |-  ( ( 2  /L P )  e.  { -u
1 ,  0 ,  1 }  ->  (
( 2  /L
P )  e.  { -u 1 ,  0 ,  1 }  <->  ( (
2  /L P )  =  -u 1  \/  ( 2  /L
P )  =  0  \/  ( 2  /L P )  =  1 ) ) )
4644, 45syl 14 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( 2  /L P )  e. 
{ -u 1 ,  0 ,  1 }  <->  ( (
2  /L P )  =  -u 1  \/  ( 2  /L
P )  =  0  \/  ( 2  /L P )  =  1 ) ) )
4744, 46mpbid 147 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( 2  /L P )  = 
-u 1  \/  (
2  /L P )  =  0  \/  ( 2  /L
P )  =  1 ) )
48 simpl 109 . . . . . . . . . 10  |-  ( ( ( 2  /L
P )  =  -u
1  /\  ( P  e.  ( Prime  \  { 2 } )  /\  -.  ( P  mod  8
)  e.  { 1 ,  7 } ) )  ->  ( 2  /L P )  =  -u 1 )
4936notbid 669 . . . . . . . . . . . . . 14  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( -.  2  ||  ( ( ( P ^ 2 )  - 
1 )  /  8
)  <->  -.  ( P  mod  8 )  e.  {
1 ,  7 } ) )
5049biimpar 297 . . . . . . . . . . . . 13  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  ( P  mod  8 )  e. 
{ 1 ,  7 } )  ->  -.  2  ||  ( ( ( P ^ 2 )  -  1 )  / 
8 ) )
51 m1expo 12255 . . . . . . . . . . . . 13  |-  ( ( ( ( ( P ^ 2 )  - 
1 )  /  8
)  e.  ZZ  /\  -.  2  ||  ( ( ( P ^ 2 )  -  1 )  /  8 ) )  ->  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) )  = 
-u 1 )
5232, 50, 51syl2an2r 595 . . . . . . . . . . . 12  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  ( P  mod  8 )  e. 
{ 1 ,  7 } )  ->  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  /  8 ) )  =  -u 1 )
5352eqcomd 2212 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  ( P  mod  8 )  e. 
{ 1 ,  7 } )  ->  -u 1  =  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) ) )
5453adantl 277 . . . . . . . . . 10  |-  ( ( ( 2  /L
P )  =  -u
1  /\  ( P  e.  ( Prime  \  { 2 } )  /\  -.  ( P  mod  8
)  e.  { 1 ,  7 } ) )  ->  -u 1  =  ( -u 1 ^ ( ( ( P ^ 2 )  - 
1 )  /  8
) ) )
5548, 54eqtrd 2239 . . . . . . . . 9  |-  ( ( ( 2  /L
P )  =  -u
1  /\  ( P  e.  ( Prime  \  { 2 } )  /\  -.  ( P  mod  8
)  e.  { 1 ,  7 } ) )  ->  ( 2  /L P )  =  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) ) )
5655a1d 22 . . . . . . . 8  |-  ( ( ( 2  /L
P )  =  -u
1  /\  ( P  e.  ( Prime  \  { 2 } )  /\  -.  ( P  mod  8
)  e.  { 1 ,  7 } ) )  ->  ( -.  ( 2  /L
P )  =  1  ->  ( 2  /L P )  =  ( -u 1 ^ ( ( ( P ^ 2 )  - 
1 )  /  8
) ) ) )
5756exp32 365 . . . . . . 7  |-  ( ( 2  /L P )  =  -u 1  ->  ( P  e.  ( Prime  \  { 2 } )  ->  ( -.  ( P  mod  8
)  e.  { 1 ,  7 }  ->  ( -.  ( 2  /L P )  =  1  ->  ( 2  /L P )  =  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) ) ) ) ) )
58 eldifsn 3762 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  <->  ( P  e.  Prime  /\  P  =/=  2 ) )
59 simpr 110 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  P  =/=  2 )  ->  P  =/=  2 )
6059necomd 2463 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  P  =/=  2 )  ->  2  =/=  P )
6158, 60sylbi 121 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
2  =/=  P )
62 2prm 12493 . . . . . . . . . . 11  |-  2  e.  Prime
63 prmrp 12511 . . . . . . . . . . 11  |-  ( ( 2  e.  Prime  /\  P  e.  Prime )  ->  (
( 2  gcd  P
)  =  1  <->  2  =/=  P ) )
6462, 1, 63sylancr 414 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( 2  gcd 
P )  =  1  <->  2  =/=  P ) )
6561, 64mpbird 167 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  gcd  P
)  =  1 )
66 lgsne0 15559 . . . . . . . . . 10  |-  ( ( 2  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( 2  /L P )  =/=  0  <->  ( 2  gcd 
P )  =  1 ) )
6742, 3, 66sylancr 414 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( 2  /L P )  =/=  0  <->  ( 2  gcd 
P )  =  1 ) )
6865, 67mpbird 167 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  /L
P )  =/=  0
)
69 eqneqall 2387 . . . . . . . 8  |-  ( ( 2  /L P )  =  0  -> 
( ( 2  /L P )  =/=  0  ->  ( -.  ( P  mod  8
)  e.  { 1 ,  7 }  ->  ( -.  ( 2  /L P )  =  1  ->  ( 2  /L P )  =  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) ) ) ) ) )
7068, 69syl5 32 . . . . . . 7  |-  ( ( 2  /L P )  =  0  -> 
( P  e.  ( Prime  \  { 2 } )  ->  ( -.  ( P  mod  8
)  e.  { 1 ,  7 }  ->  ( -.  ( 2  /L P )  =  1  ->  ( 2  /L P )  =  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) ) ) ) ) )
71 pm2.24 622 . . . . . . . 8  |-  ( ( 2  /L P )  =  1  -> 
( -.  ( 2  /L P )  =  1  ->  (
2  /L P )  =  ( -u
1 ^ ( ( ( P ^ 2 )  -  1 )  /  8 ) ) ) )
72712a1d 23 . . . . . . 7  |-  ( ( 2  /L P )  =  1  -> 
( P  e.  ( Prime  \  { 2 } )  ->  ( -.  ( P  mod  8
)  e.  { 1 ,  7 }  ->  ( -.  ( 2  /L P )  =  1  ->  ( 2  /L P )  =  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) ) ) ) ) )
7357, 70, 723jaoi 1316 . . . . . 6  |-  ( ( ( 2  /L
P )  =  -u
1  \/  ( 2  /L P )  =  0  \/  (
2  /L P )  =  1 )  ->  ( P  e.  ( Prime  \  { 2 } )  ->  ( -.  ( P  mod  8
)  e.  { 1 ,  7 }  ->  ( -.  ( 2  /L P )  =  1  ->  ( 2  /L P )  =  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) ) ) ) ) )
7447, 73mpcom 36 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( -.  ( P  mod  8 )  e. 
{ 1 ,  7 }  ->  ( -.  ( 2  /L
P )  =  1  ->  ( 2  /L P )  =  ( -u 1 ^ ( ( ( P ^ 2 )  - 
1 )  /  8
) ) ) ) )
7574com13 80 . . . 4  |-  ( -.  ( 2  /L
P )  =  1  ->  ( -.  ( P  mod  8 )  e. 
{ 1 ,  7 }  ->  ( P  e.  ( Prime  \  { 2 } )  ->  (
2  /L P )  =  ( -u
1 ^ ( ( ( P ^ 2 )  -  1 )  /  8 ) ) ) ) )
7641, 75bijadc 884 . . 3  |-  (DECID  ( P  mod  8 )  e. 
{ 1 ,  7 }  ->  ( (
( 2  /L
P )  =  1  <-> 
( P  mod  8
)  e.  { 1 ,  7 } )  ->  ( P  e.  ( Prime  \  { 2 } )  ->  (
2  /L P )  =  ( -u
1 ^ ( ( ( P ^ 2 )  -  1 )  /  8 ) ) ) ) )
7721, 23, 76sylc 62 . 2  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  e.  ( Prime  \  { 2 } )  ->  (
2  /L P )  =  ( -u
1 ^ ( ( ( P ^ 2 )  -  1 )  /  8 ) ) ) )
7877pm2.43i 49 1  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  /L
P )  =  (
-u 1 ^ (
( ( P ^
2 )  -  1 )  /  8 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    \/ w3o 980    = wceq 1373    e. wcel 2177    =/= wne 2377    \ cdif 3164   {csn 3634   {cpr 3635   {ctp 3636   class class class wbr 4047  (class class class)co 5951   0cc0 7932   1c1 7933    - cmin 8250   -ucneg 8251    / cdiv 8752   NNcn 9043   2c2 9094   7c7 9099   8c8 9100   NN0cn0 9302   ZZcz 9379    mod cmo 10474   ^cexp 10690    || cdvds 12142    gcd cgcd 12318   Primecprime 12473    /Lclgs 15518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-tp 3642  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-frec 6484  df-1o 6509  df-2o 6510  df-oadd 6513  df-er 6627  df-en 6835  df-dom 6836  df-fin 6837  df-sup 7093  df-inf 7094  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-9 9109  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-ioo 10021  df-ico 10023  df-fz 10138  df-fzo 10272  df-fl 10420  df-mod 10475  df-seqfrec 10600  df-exp 10691  df-fac 10878  df-ihash 10928  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-clim 11634  df-proddc 11906  df-dvds 12143  df-gcd 12319  df-prm 12474  df-phi 12577  df-pc 12652  df-lgs 15519
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator