ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgsoddprm Unicode version

Theorem 2lgsoddprm 15354
Description: The second supplement to the law of quadratic reciprocity for odd primes (common representation, see theorem 9.5 in [ApostolNT] p. 181): The Legendre symbol for  2 at an odd prime is minus one to the power of the square of the odd prime minus one divided by eight ( (
2  /L P ) = -1^(((P^2)-1)/8) ). (Contributed by AV, 20-Jul-2021.)
Assertion
Ref Expression
2lgsoddprm  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  /L
P )  =  (
-u 1 ^ (
( ( P ^
2 )  -  1 )  /  8 ) ) )

Proof of Theorem 2lgsoddprm
StepHypRef Expression
1 eldifi 3285 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  Prime )
2 prmz 12279 . . . . . . . . 9  |-  ( P  e.  Prime  ->  P  e.  ZZ )
31, 2syl 14 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  ZZ )
4 8nn 9158 . . . . . . . . 9  |-  8  e.  NN
54a1i 9 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
8  e.  NN )
63, 5zmodcld 10437 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  mod  8
)  e.  NN0 )
76nn0zd 9446 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  mod  8
)  e.  ZZ )
8 1zzd 9353 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
1  e.  ZZ )
9 zdceq 9401 . . . . . 6  |-  ( ( ( P  mod  8
)  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( P  mod  8 )  =  1 )
107, 8, 9syl2anc 411 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> DECID  ( P  mod  8 )  =  1 )
11 7nn 9157 . . . . . . . 8  |-  7  e.  NN
1211nnzi 9347 . . . . . . 7  |-  7  e.  ZZ
1312a1i 9 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
7  e.  ZZ )
14 zdceq 9401 . . . . . 6  |-  ( ( ( P  mod  8
)  e.  ZZ  /\  7  e.  ZZ )  -> DECID  ( P  mod  8 )  =  7 )
157, 13, 14syl2anc 411 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> DECID  ( P  mod  8 )  =  7 )
16 dcor 937 . . . . 5  |-  (DECID  ( P  mod  8 )  =  1  ->  (DECID  ( P  mod  8 )  =  7  -> DECID 
( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 ) ) )
1710, 15, 16sylc 62 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  -> DECID  (
( P  mod  8
)  =  1  \/  ( P  mod  8
)  =  7 ) )
18 elprg 3642 . . . . . 6  |-  ( ( P  mod  8 )  e.  NN0  ->  ( ( P  mod  8 )  e.  { 1 ,  7 }  <->  ( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 ) ) )
196, 18syl 14 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  mod  8 )  e.  {
1 ,  7 }  <-> 
( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 ) ) )
2019dcbid 839 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
(DECID  ( P  mod  8
)  e.  { 1 ,  7 }  <-> DECID  ( ( P  mod  8 )  =  1  \/  ( P  mod  8 )  =  7 ) ) )
2117, 20mpbird 167 . . 3  |-  ( P  e.  ( Prime  \  {
2 } )  -> DECID  ( P  mod  8 )  e. 
{ 1 ,  7 } )
22 2lgs 15345 . . . 4  |-  ( P  e.  Prime  ->  ( ( 2  /L P )  =  1  <->  ( P  mod  8 )  e. 
{ 1 ,  7 } ) )
231, 22syl 14 . . 3  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( 2  /L P )  =  1  <->  ( P  mod  8 )  e.  {
1 ,  7 } ) )
24 simpl 109 . . . . . 6  |-  ( ( ( 2  /L
P )  =  1  /\  ( ( P  mod  8 )  e. 
{ 1 ,  7 }  /\  P  e.  ( Prime  \  { 2 } ) ) )  ->  ( 2  /L P )  =  1 )
25 eqcom 2198 . . . . . . . . . 10  |-  ( 1  =  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) )  <->  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) )  =  1 )
2625a1i 9 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 1  =  (
-u 1 ^ (
( ( P ^
2 )  -  1 )  /  8 ) )  <->  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) )  =  1 ) )
27 nnoddn2prm 12429 . . . . . . . . . . . 12  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  e.  NN  /\ 
-.  2  ||  P
) )
28 nnz 9345 . . . . . . . . . . . . 13  |-  ( P  e.  NN  ->  P  e.  ZZ )
2928anim1i 340 . . . . . . . . . . . 12  |-  ( ( P  e.  NN  /\  -.  2  ||  P )  ->  ( P  e.  ZZ  /\  -.  2  ||  P ) )
3027, 29syl 14 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  e.  ZZ  /\ 
-.  2  ||  P
) )
31 sqoddm1div8z 12051 . . . . . . . . . . 11  |-  ( ( P  e.  ZZ  /\  -.  2  ||  P )  ->  ( ( ( P ^ 2 )  -  1 )  / 
8 )  e.  ZZ )
3230, 31syl 14 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( ( P ^ 2 )  - 
1 )  /  8
)  e.  ZZ )
33 m1exp1 12066 . . . . . . . . . 10  |-  ( ( ( ( P ^
2 )  -  1 )  /  8 )  e.  ZZ  ->  (
( -u 1 ^ (
( ( P ^
2 )  -  1 )  /  8 ) )  =  1  <->  2 
||  ( ( ( P ^ 2 )  -  1 )  / 
8 ) ) )
3432, 33syl 14 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) )  =  1  <->  2  ||  (
( ( P ^
2 )  -  1 )  /  8 ) ) )
35 2lgsoddprmlem4 15353 . . . . . . . . . 10  |-  ( ( P  e.  ZZ  /\  -.  2  ||  P )  ->  ( 2  ||  ( ( ( P ^ 2 )  - 
1 )  /  8
)  <->  ( P  mod  8 )  e.  {
1 ,  7 } ) )
3630, 35syl 14 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  ||  (
( ( P ^
2 )  -  1 )  /  8 )  <-> 
( P  mod  8
)  e.  { 1 ,  7 } ) )
3726, 34, 363bitrd 214 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 1  =  (
-u 1 ^ (
( ( P ^
2 )  -  1 )  /  8 ) )  <->  ( P  mod  8 )  e.  {
1 ,  7 } ) )
3837biimparc 299 . . . . . . 7  |-  ( ( ( P  mod  8
)  e.  { 1 ,  7 }  /\  P  e.  ( Prime  \  { 2 } ) )  ->  1  =  ( -u 1 ^ (
( ( P ^
2 )  -  1 )  /  8 ) ) )
3938adantl 277 . . . . . 6  |-  ( ( ( 2  /L
P )  =  1  /\  ( ( P  mod  8 )  e. 
{ 1 ,  7 }  /\  P  e.  ( Prime  \  { 2 } ) ) )  ->  1  =  (
-u 1 ^ (
( ( P ^
2 )  -  1 )  /  8 ) ) )
4024, 39eqtrd 2229 . . . . 5  |-  ( ( ( 2  /L
P )  =  1  /\  ( ( P  mod  8 )  e. 
{ 1 ,  7 }  /\  P  e.  ( Prime  \  { 2 } ) ) )  ->  ( 2  /L P )  =  ( -u 1 ^ ( ( ( P ^ 2 )  - 
1 )  /  8
) ) )
4140exp32 365 . . . 4  |-  ( ( 2  /L P )  =  1  -> 
( ( P  mod  8 )  e.  {
1 ,  7 }  ->  ( P  e.  ( Prime  \  { 2 } )  ->  (
2  /L P )  =  ( -u
1 ^ ( ( ( P ^ 2 )  -  1 )  /  8 ) ) ) ) )
42 2z 9354 . . . . . . . 8  |-  2  e.  ZZ
43 lgscl1 15264 . . . . . . . 8  |-  ( ( 2  e.  ZZ  /\  P  e.  ZZ )  ->  ( 2  /L
P )  e.  { -u 1 ,  0 ,  1 } )
4442, 3, 43sylancr 414 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  /L
P )  e.  { -u 1 ,  0 ,  1 } )
45 eltpg 3667 . . . . . . . 8  |-  ( ( 2  /L P )  e.  { -u
1 ,  0 ,  1 }  ->  (
( 2  /L
P )  e.  { -u 1 ,  0 ,  1 }  <->  ( (
2  /L P )  =  -u 1  \/  ( 2  /L
P )  =  0  \/  ( 2  /L P )  =  1 ) ) )
4644, 45syl 14 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( 2  /L P )  e. 
{ -u 1 ,  0 ,  1 }  <->  ( (
2  /L P )  =  -u 1  \/  ( 2  /L
P )  =  0  \/  ( 2  /L P )  =  1 ) ) )
4744, 46mpbid 147 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( 2  /L P )  = 
-u 1  \/  (
2  /L P )  =  0  \/  ( 2  /L
P )  =  1 ) )
48 simpl 109 . . . . . . . . . 10  |-  ( ( ( 2  /L
P )  =  -u
1  /\  ( P  e.  ( Prime  \  { 2 } )  /\  -.  ( P  mod  8
)  e.  { 1 ,  7 } ) )  ->  ( 2  /L P )  =  -u 1 )
4936notbid 668 . . . . . . . . . . . . . 14  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( -.  2  ||  ( ( ( P ^ 2 )  - 
1 )  /  8
)  <->  -.  ( P  mod  8 )  e.  {
1 ,  7 } ) )
5049biimpar 297 . . . . . . . . . . . . 13  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  ( P  mod  8 )  e. 
{ 1 ,  7 } )  ->  -.  2  ||  ( ( ( P ^ 2 )  -  1 )  / 
8 ) )
51 m1expo 12065 . . . . . . . . . . . . 13  |-  ( ( ( ( ( P ^ 2 )  - 
1 )  /  8
)  e.  ZZ  /\  -.  2  ||  ( ( ( P ^ 2 )  -  1 )  /  8 ) )  ->  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) )  = 
-u 1 )
5232, 50, 51syl2an2r 595 . . . . . . . . . . . 12  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  ( P  mod  8 )  e. 
{ 1 ,  7 } )  ->  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  /  8 ) )  =  -u 1 )
5352eqcomd 2202 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  ( P  mod  8 )  e. 
{ 1 ,  7 } )  ->  -u 1  =  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) ) )
5453adantl 277 . . . . . . . . . 10  |-  ( ( ( 2  /L
P )  =  -u
1  /\  ( P  e.  ( Prime  \  { 2 } )  /\  -.  ( P  mod  8
)  e.  { 1 ,  7 } ) )  ->  -u 1  =  ( -u 1 ^ ( ( ( P ^ 2 )  - 
1 )  /  8
) ) )
5548, 54eqtrd 2229 . . . . . . . . 9  |-  ( ( ( 2  /L
P )  =  -u
1  /\  ( P  e.  ( Prime  \  { 2 } )  /\  -.  ( P  mod  8
)  e.  { 1 ,  7 } ) )  ->  ( 2  /L P )  =  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) ) )
5655a1d 22 . . . . . . . 8  |-  ( ( ( 2  /L
P )  =  -u
1  /\  ( P  e.  ( Prime  \  { 2 } )  /\  -.  ( P  mod  8
)  e.  { 1 ,  7 } ) )  ->  ( -.  ( 2  /L
P )  =  1  ->  ( 2  /L P )  =  ( -u 1 ^ ( ( ( P ^ 2 )  - 
1 )  /  8
) ) ) )
5756exp32 365 . . . . . . 7  |-  ( ( 2  /L P )  =  -u 1  ->  ( P  e.  ( Prime  \  { 2 } )  ->  ( -.  ( P  mod  8
)  e.  { 1 ,  7 }  ->  ( -.  ( 2  /L P )  =  1  ->  ( 2  /L P )  =  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) ) ) ) ) )
58 eldifsn 3749 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  <->  ( P  e.  Prime  /\  P  =/=  2 ) )
59 simpr 110 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  P  =/=  2 )  ->  P  =/=  2 )
6059necomd 2453 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  P  =/=  2 )  ->  2  =/=  P )
6158, 60sylbi 121 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
2  =/=  P )
62 2prm 12295 . . . . . . . . . . 11  |-  2  e.  Prime
63 prmrp 12313 . . . . . . . . . . 11  |-  ( ( 2  e.  Prime  /\  P  e.  Prime )  ->  (
( 2  gcd  P
)  =  1  <->  2  =/=  P ) )
6462, 1, 63sylancr 414 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( 2  gcd 
P )  =  1  <->  2  =/=  P ) )
6561, 64mpbird 167 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  gcd  P
)  =  1 )
66 lgsne0 15279 . . . . . . . . . 10  |-  ( ( 2  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( 2  /L P )  =/=  0  <->  ( 2  gcd 
P )  =  1 ) )
6742, 3, 66sylancr 414 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( 2  /L P )  =/=  0  <->  ( 2  gcd 
P )  =  1 ) )
6865, 67mpbird 167 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  /L
P )  =/=  0
)
69 eqneqall 2377 . . . . . . . 8  |-  ( ( 2  /L P )  =  0  -> 
( ( 2  /L P )  =/=  0  ->  ( -.  ( P  mod  8
)  e.  { 1 ,  7 }  ->  ( -.  ( 2  /L P )  =  1  ->  ( 2  /L P )  =  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) ) ) ) ) )
7068, 69syl5 32 . . . . . . 7  |-  ( ( 2  /L P )  =  0  -> 
( P  e.  ( Prime  \  { 2 } )  ->  ( -.  ( P  mod  8
)  e.  { 1 ,  7 }  ->  ( -.  ( 2  /L P )  =  1  ->  ( 2  /L P )  =  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) ) ) ) ) )
71 pm2.24 622 . . . . . . . 8  |-  ( ( 2  /L P )  =  1  -> 
( -.  ( 2  /L P )  =  1  ->  (
2  /L P )  =  ( -u
1 ^ ( ( ( P ^ 2 )  -  1 )  /  8 ) ) ) )
72712a1d 23 . . . . . . 7  |-  ( ( 2  /L P )  =  1  -> 
( P  e.  ( Prime  \  { 2 } )  ->  ( -.  ( P  mod  8
)  e.  { 1 ,  7 }  ->  ( -.  ( 2  /L P )  =  1  ->  ( 2  /L P )  =  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) ) ) ) ) )
7357, 70, 723jaoi 1314 . . . . . 6  |-  ( ( ( 2  /L
P )  =  -u
1  \/  ( 2  /L P )  =  0  \/  (
2  /L P )  =  1 )  ->  ( P  e.  ( Prime  \  { 2 } )  ->  ( -.  ( P  mod  8
)  e.  { 1 ,  7 }  ->  ( -.  ( 2  /L P )  =  1  ->  ( 2  /L P )  =  ( -u 1 ^ ( ( ( P ^ 2 )  -  1 )  / 
8 ) ) ) ) ) )
7447, 73mpcom 36 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( -.  ( P  mod  8 )  e. 
{ 1 ,  7 }  ->  ( -.  ( 2  /L
P )  =  1  ->  ( 2  /L P )  =  ( -u 1 ^ ( ( ( P ^ 2 )  - 
1 )  /  8
) ) ) ) )
7574com13 80 . . . 4  |-  ( -.  ( 2  /L
P )  =  1  ->  ( -.  ( P  mod  8 )  e. 
{ 1 ,  7 }  ->  ( P  e.  ( Prime  \  { 2 } )  ->  (
2  /L P )  =  ( -u
1 ^ ( ( ( P ^ 2 )  -  1 )  /  8 ) ) ) ) )
7641, 75bijadc 883 . . 3  |-  (DECID  ( P  mod  8 )  e. 
{ 1 ,  7 }  ->  ( (
( 2  /L
P )  =  1  <-> 
( P  mod  8
)  e.  { 1 ,  7 } )  ->  ( P  e.  ( Prime  \  { 2 } )  ->  (
2  /L P )  =  ( -u
1 ^ ( ( ( P ^ 2 )  -  1 )  /  8 ) ) ) ) )
7721, 23, 76sylc 62 . 2  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  e.  ( Prime  \  { 2 } )  ->  (
2  /L P )  =  ( -u
1 ^ ( ( ( P ^ 2 )  -  1 )  /  8 ) ) ) )
7877pm2.43i 49 1  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  /L
P )  =  (
-u 1 ^ (
( ( P ^
2 )  -  1 )  /  8 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    \/ w3o 979    = wceq 1364    e. wcel 2167    =/= wne 2367    \ cdif 3154   {csn 3622   {cpr 3623   {ctp 3624   class class class wbr 4033  (class class class)co 5922   0cc0 7879   1c1 7880    - cmin 8197   -ucneg 8198    / cdiv 8699   NNcn 8990   2c2 9041   7c7 9046   8c8 9047   NN0cn0 9249   ZZcz 9326    mod cmo 10414   ^cexp 10630    || cdvds 11952    gcd cgcd 12120   Primecprime 12275    /Lclgs 15238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-2o 6475  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-9 9056  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-ioo 9967  df-ico 9969  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-fac 10818  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-proddc 11716  df-dvds 11953  df-gcd 12121  df-prm 12276  df-phi 12379  df-pc 12454  df-lgs 15239
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator