| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > modxai | Unicode version | ||
| Description: Add exponents in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.) (Revised by Mario Carneiro, 5-Feb-2015.) |
| Ref | Expression |
|---|---|
| modxai.1 |
|
| modxai.2 |
|
| modxai.3 |
|
| modxai.4 |
|
| modxai.5 |
|
| modxai.6 |
|
| modxai.7 |
|
| modxai.8 |
|
| modxai.11 |
|
| modxai.12 |
|
| modxai.9 |
|
| modxai.10 |
|
| Ref | Expression |
|---|---|
| modxai |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modxai.9 |
. . . . 5
| |
| 2 | 1 | oveq2i 5933 |
. . . 4
|
| 3 | modxai.2 |
. . . . . 6
| |
| 4 | 3 | nncni 8997 |
. . . . 5
|
| 5 | modxai.3 |
. . . . 5
| |
| 6 | modxai.7 |
. . . . 5
| |
| 7 | expadd 10658 |
. . . . 5
| |
| 8 | 4, 5, 6, 7 | mp3an 1348 |
. . . 4
|
| 9 | 2, 8 | eqtr3i 2219 |
. . 3
|
| 10 | 9 | oveq1i 5932 |
. 2
|
| 11 | nnexpcl 10629 |
. . . . . . . . 9
| |
| 12 | 3, 5, 11 | mp2an 426 |
. . . . . . . 8
|
| 13 | 12 | nnzi 9344 |
. . . . . . 7
|
| 14 | 13 | a1i 9 |
. . . . . 6
|
| 15 | modxai.5 |
. . . . . . . 8
| |
| 16 | 15 | nn0zi 9345 |
. . . . . . 7
|
| 17 | 16 | a1i 9 |
. . . . . 6
|
| 18 | nnexpcl 10629 |
. . . . . . . . 9
| |
| 19 | 3, 6, 18 | mp2an 426 |
. . . . . . . 8
|
| 20 | 19 | nnzi 9344 |
. . . . . . 7
|
| 21 | 20 | a1i 9 |
. . . . . 6
|
| 22 | modxai.8 |
. . . . . . . 8
| |
| 23 | 22 | nn0zi 9345 |
. . . . . . 7
|
| 24 | 23 | a1i 9 |
. . . . . 6
|
| 25 | modxai.1 |
. . . . . . 7
| |
| 26 | nnq 9704 |
. . . . . . 7
| |
| 27 | 25, 26 | mp1i 10 |
. . . . . 6
|
| 28 | nnrp 9735 |
. . . . . . . 8
| |
| 29 | 25, 28 | mp1i 10 |
. . . . . . 7
|
| 30 | 29 | rpgt0d 9771 |
. . . . . 6
|
| 31 | modxai.11 |
. . . . . . 7
| |
| 32 | 31 | a1i 9 |
. . . . . 6
|
| 33 | modxai.12 |
. . . . . . 7
| |
| 34 | 33 | a1i 9 |
. . . . . 6
|
| 35 | 14, 17, 21, 24, 27, 30, 32, 34 | modqmul12d 10455 |
. . . . 5
|
| 36 | 35 | mptru 1373 |
. . . 4
|
| 37 | modxai.10 |
. . . . . 6
| |
| 38 | modxai.4 |
. . . . . . . . 9
| |
| 39 | zcn 9328 |
. . . . . . . . 9
| |
| 40 | 38, 39 | ax-mp 5 |
. . . . . . . 8
|
| 41 | 25 | nncni 8997 |
. . . . . . . 8
|
| 42 | 40, 41 | mulcli 8029 |
. . . . . . 7
|
| 43 | modxai.6 |
. . . . . . . 8
| |
| 44 | 43 | nn0cni 9258 |
. . . . . . 7
|
| 45 | 42, 44 | addcomi 8168 |
. . . . . 6
|
| 46 | 37, 45 | eqtr3i 2219 |
. . . . 5
|
| 47 | 46 | oveq1i 5932 |
. . . 4
|
| 48 | 36, 47 | eqtri 2217 |
. . 3
|
| 49 | nn0z 9343 |
. . . . 5
| |
| 50 | zq 9697 |
. . . . 5
| |
| 51 | 43, 49, 50 | mp2b 8 |
. . . 4
|
| 52 | 25, 26 | ax-mp 5 |
. . . 4
|
| 53 | 30 | mptru 1373 |
. . . 4
|
| 54 | modqcyc 10436 |
. . . 4
| |
| 55 | 51, 38, 52, 53, 54 | mp4an 427 |
. . 3
|
| 56 | 48, 55 | eqtri 2217 |
. 2
|
| 57 | 10, 56 | eqtri 2217 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7968 ax-resscn 7969 ax-1cn 7970 ax-1re 7971 ax-icn 7972 ax-addcl 7973 ax-addrcl 7974 ax-mulcl 7975 ax-mulrcl 7976 ax-addcom 7977 ax-mulcom 7978 ax-addass 7979 ax-mulass 7980 ax-distr 7981 ax-i2m1 7982 ax-0lt1 7983 ax-1rid 7984 ax-0id 7985 ax-rnegex 7986 ax-precex 7987 ax-cnre 7988 ax-pre-ltirr 7989 ax-pre-ltwlin 7990 ax-pre-lttrn 7991 ax-pre-apti 7992 ax-pre-ltadd 7993 ax-pre-mulgt0 7994 ax-pre-mulext 7995 ax-arch 7996 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8061 df-mnf 8062 df-xr 8063 df-ltxr 8064 df-le 8065 df-sub 8197 df-neg 8198 df-reap 8599 df-ap 8606 df-div 8697 df-inn 8988 df-n0 9247 df-z 9324 df-uz 9599 df-q 9691 df-rp 9726 df-fl 10345 df-mod 10400 df-seqfrec 10525 df-exp 10616 |
| This theorem is referenced by: mod2xi 12562 modxp1i 12563 |
| Copyright terms: Public domain | W3C validator |