ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modxai Unicode version

Theorem modxai 12783
Description: Add exponents in a power mod calculation. (Contributed by Mario Carneiro, 21-Feb-2014.) (Revised by Mario Carneiro, 5-Feb-2015.)
Hypotheses
Ref Expression
modxai.1  |-  N  e.  NN
modxai.2  |-  A  e.  NN
modxai.3  |-  B  e. 
NN0
modxai.4  |-  D  e.  ZZ
modxai.5  |-  K  e. 
NN0
modxai.6  |-  M  e. 
NN0
modxai.7  |-  C  e. 
NN0
modxai.8  |-  L  e. 
NN0
modxai.11  |-  ( ( A ^ B )  mod  N )  =  ( K  mod  N
)
modxai.12  |-  ( ( A ^ C )  mod  N )  =  ( L  mod  N
)
modxai.9  |-  ( B  +  C )  =  E
modxai.10  |-  ( ( D  x.  N )  +  M )  =  ( K  x.  L
)
Assertion
Ref Expression
modxai  |-  ( ( A ^ E )  mod  N )  =  ( M  mod  N
)

Proof of Theorem modxai
StepHypRef Expression
1 modxai.9 . . . . 5  |-  ( B  +  C )  =  E
21oveq2i 5962 . . . 4  |-  ( A ^ ( B  +  C ) )  =  ( A ^ E
)
3 modxai.2 . . . . . 6  |-  A  e.  NN
43nncni 9053 . . . . 5  |-  A  e.  CC
5 modxai.3 . . . . 5  |-  B  e. 
NN0
6 modxai.7 . . . . 5  |-  C  e. 
NN0
7 expadd 10733 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  NN0  /\  C  e.  NN0 )  ->  ( A ^ ( B  +  C ) )  =  ( ( A ^ B )  x.  ( A ^ C ) ) )
84, 5, 6, 7mp3an 1350 . . . 4  |-  ( A ^ ( B  +  C ) )  =  ( ( A ^ B )  x.  ( A ^ C ) )
92, 8eqtr3i 2229 . . 3  |-  ( A ^ E )  =  ( ( A ^ B )  x.  ( A ^ C ) )
109oveq1i 5961 . 2  |-  ( ( A ^ E )  mod  N )  =  ( ( ( A ^ B )  x.  ( A ^ C
) )  mod  N
)
11 nnexpcl 10704 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN0 )  -> 
( A ^ B
)  e.  NN )
123, 5, 11mp2an 426 . . . . . . . 8  |-  ( A ^ B )  e.  NN
1312nnzi 9400 . . . . . . 7  |-  ( A ^ B )  e.  ZZ
1413a1i 9 . . . . . 6  |-  ( T. 
->  ( A ^ B
)  e.  ZZ )
15 modxai.5 . . . . . . . 8  |-  K  e. 
NN0
1615nn0zi 9401 . . . . . . 7  |-  K  e.  ZZ
1716a1i 9 . . . . . 6  |-  ( T. 
->  K  e.  ZZ )
18 nnexpcl 10704 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  C  e.  NN0 )  -> 
( A ^ C
)  e.  NN )
193, 6, 18mp2an 426 . . . . . . . 8  |-  ( A ^ C )  e.  NN
2019nnzi 9400 . . . . . . 7  |-  ( A ^ C )  e.  ZZ
2120a1i 9 . . . . . 6  |-  ( T. 
->  ( A ^ C
)  e.  ZZ )
22 modxai.8 . . . . . . . 8  |-  L  e. 
NN0
2322nn0zi 9401 . . . . . . 7  |-  L  e.  ZZ
2423a1i 9 . . . . . 6  |-  ( T. 
->  L  e.  ZZ )
25 modxai.1 . . . . . . 7  |-  N  e.  NN
26 nnq 9761 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  QQ )
2725, 26mp1i 10 . . . . . 6  |-  ( T. 
->  N  e.  QQ )
28 nnrp 9792 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  RR+ )
2925, 28mp1i 10 . . . . . . 7  |-  ( T. 
->  N  e.  RR+ )
3029rpgt0d 9828 . . . . . 6  |-  ( T. 
->  0  <  N )
31 modxai.11 . . . . . . 7  |-  ( ( A ^ B )  mod  N )  =  ( K  mod  N
)
3231a1i 9 . . . . . 6  |-  ( T. 
->  ( ( A ^ B )  mod  N
)  =  ( K  mod  N ) )
33 modxai.12 . . . . . . 7  |-  ( ( A ^ C )  mod  N )  =  ( L  mod  N
)
3433a1i 9 . . . . . 6  |-  ( T. 
->  ( ( A ^ C )  mod  N
)  =  ( L  mod  N ) )
3514, 17, 21, 24, 27, 30, 32, 34modqmul12d 10530 . . . . 5  |-  ( T. 
->  ( ( ( A ^ B )  x.  ( A ^ C
) )  mod  N
)  =  ( ( K  x.  L )  mod  N ) )
3635mptru 1382 . . . 4  |-  ( ( ( A ^ B
)  x.  ( A ^ C ) )  mod  N )  =  ( ( K  x.  L )  mod  N
)
37 modxai.10 . . . . . 6  |-  ( ( D  x.  N )  +  M )  =  ( K  x.  L
)
38 modxai.4 . . . . . . . . 9  |-  D  e.  ZZ
39 zcn 9384 . . . . . . . . 9  |-  ( D  e.  ZZ  ->  D  e.  CC )
4038, 39ax-mp 5 . . . . . . . 8  |-  D  e.  CC
4125nncni 9053 . . . . . . . 8  |-  N  e.  CC
4240, 41mulcli 8084 . . . . . . 7  |-  ( D  x.  N )  e.  CC
43 modxai.6 . . . . . . . 8  |-  M  e. 
NN0
4443nn0cni 9314 . . . . . . 7  |-  M  e.  CC
4542, 44addcomi 8223 . . . . . 6  |-  ( ( D  x.  N )  +  M )  =  ( M  +  ( D  x.  N ) )
4637, 45eqtr3i 2229 . . . . 5  |-  ( K  x.  L )  =  ( M  +  ( D  x.  N ) )
4746oveq1i 5961 . . . 4  |-  ( ( K  x.  L )  mod  N )  =  ( ( M  +  ( D  x.  N
) )  mod  N
)
4836, 47eqtri 2227 . . 3  |-  ( ( ( A ^ B
)  x.  ( A ^ C ) )  mod  N )  =  ( ( M  +  ( D  x.  N
) )  mod  N
)
49 nn0z 9399 . . . . 5  |-  ( M  e.  NN0  ->  M  e.  ZZ )
50 zq 9754 . . . . 5  |-  ( M  e.  ZZ  ->  M  e.  QQ )
5143, 49, 50mp2b 8 . . . 4  |-  M  e.  QQ
5225, 26ax-mp 5 . . . 4  |-  N  e.  QQ
5330mptru 1382 . . . 4  |-  0  <  N
54 modqcyc 10511 . . . 4  |-  ( ( ( M  e.  QQ  /\  D  e.  ZZ )  /\  ( N  e.  QQ  /\  0  < 
N ) )  -> 
( ( M  +  ( D  x.  N
) )  mod  N
)  =  ( M  mod  N ) )
5551, 38, 52, 53, 54mp4an 427 . . 3  |-  ( ( M  +  ( D  x.  N ) )  mod  N )  =  ( M  mod  N
)
5648, 55eqtri 2227 . 2  |-  ( ( ( A ^ B
)  x.  ( A ^ C ) )  mod  N )  =  ( M  mod  N
)
5710, 56eqtri 2227 1  |-  ( ( A ^ E )  mod  N )  =  ( M  mod  N
)
Colors of variables: wff set class
Syntax hints:    = wceq 1373   T. wtru 1374    e. wcel 2177   class class class wbr 4047  (class class class)co 5951   CCcc 7930   0cc0 7932    + caddc 7935    x. cmul 7937    < clt 8114   NNcn 9043   NN0cn0 9302   ZZcz 9379   QQcq 9747   RR+crp 9782    mod cmo 10474   ^cexp 10690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-fl 10420  df-mod 10475  df-seqfrec 10600  df-exp 10691
This theorem is referenced by:  mod2xi  12784  modxp1i  12785
  Copyright terms: Public domain W3C validator