ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absef Unicode version

Theorem absef 11273
Description: The absolute value of the exponential is the exponential of the real part. (Contributed by Paul Chapman, 13-Sep-2007.)
Assertion
Ref Expression
absef  |-  ( A  e.  CC  ->  ( abs `  ( exp `  A
) )  =  ( exp `  ( Re
`  A ) ) )

Proof of Theorem absef
StepHypRef Expression
1 replim 10472 . . . . . 6  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
21fveq2d 5357 . . . . 5  |-  ( A  e.  CC  ->  ( exp `  A )  =  ( exp `  (
( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) ) ) )
3 recl 10466 . . . . . . 7  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
43recnd 7666 . . . . . 6  |-  ( A  e.  CC  ->  (
Re `  A )  e.  CC )
5 ax-icn 7590 . . . . . . 7  |-  _i  e.  CC
6 imcl 10467 . . . . . . . 8  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
76recnd 7666 . . . . . . 7  |-  ( A  e.  CC  ->  (
Im `  A )  e.  CC )
8 mulcl 7619 . . . . . . 7  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  (
Im `  A )
)  e.  CC )
95, 7, 8sylancr 408 . . . . . 6  |-  ( A  e.  CC  ->  (
_i  x.  ( Im `  A ) )  e.  CC )
10 efadd 11179 . . . . . 6  |-  ( ( ( Re `  A
)  e.  CC  /\  ( _i  x.  (
Im `  A )
)  e.  CC )  ->  ( exp `  (
( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) ) )  =  ( ( exp `  ( Re
`  A ) )  x.  ( exp `  (
_i  x.  ( Im `  A ) ) ) ) )
114, 9, 10syl2anc 406 . . . . 5  |-  ( A  e.  CC  ->  ( exp `  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )  =  ( ( exp `  (
Re `  A )
)  x.  ( exp `  ( _i  x.  (
Im `  A )
) ) ) )
122, 11eqtrd 2132 . . . 4  |-  ( A  e.  CC  ->  ( exp `  A )  =  ( ( exp `  (
Re `  A )
)  x.  ( exp `  ( _i  x.  (
Im `  A )
) ) ) )
1312fveq2d 5357 . . 3  |-  ( A  e.  CC  ->  ( abs `  ( exp `  A
) )  =  ( abs `  ( ( exp `  ( Re
`  A ) )  x.  ( exp `  (
_i  x.  ( Im `  A ) ) ) ) ) )
143reefcld 11173 . . . . 5  |-  ( A  e.  CC  ->  ( exp `  ( Re `  A ) )  e.  RR )
1514recnd 7666 . . . 4  |-  ( A  e.  CC  ->  ( exp `  ( Re `  A ) )  e.  CC )
16 efcl 11168 . . . . 5  |-  ( ( _i  x.  ( Im
`  A ) )  e.  CC  ->  ( exp `  ( _i  x.  ( Im `  A ) ) )  e.  CC )
179, 16syl 14 . . . 4  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  ( Im `  A ) ) )  e.  CC )
1815, 17absmuld 10806 . . 3  |-  ( A  e.  CC  ->  ( abs `  ( ( exp `  ( Re `  A
) )  x.  ( exp `  ( _i  x.  ( Im `  A ) ) ) ) )  =  ( ( abs `  ( exp `  (
Re `  A )
) )  x.  ( abs `  ( exp `  (
_i  x.  ( Im `  A ) ) ) ) ) )
19 absefi 11272 . . . . 5  |-  ( ( Im `  A )  e.  RR  ->  ( abs `  ( exp `  (
_i  x.  ( Im `  A ) ) ) )  =  1 )
206, 19syl 14 . . . 4  |-  ( A  e.  CC  ->  ( abs `  ( exp `  (
_i  x.  ( Im `  A ) ) ) )  =  1 )
2120oveq2d 5722 . . 3  |-  ( A  e.  CC  ->  (
( abs `  ( exp `  ( Re `  A ) ) )  x.  ( abs `  ( exp `  ( _i  x.  ( Im `  A ) ) ) ) )  =  ( ( abs `  ( exp `  (
Re `  A )
) )  x.  1 ) )
2213, 18, 213eqtrd 2136 . 2  |-  ( A  e.  CC  ->  ( abs `  ( exp `  A
) )  =  ( ( abs `  ( exp `  ( Re `  A ) ) )  x.  1 ) )
2315abscld 10793 . . . 4  |-  ( A  e.  CC  ->  ( abs `  ( exp `  (
Re `  A )
) )  e.  RR )
2423recnd 7666 . . 3  |-  ( A  e.  CC  ->  ( abs `  ( exp `  (
Re `  A )
) )  e.  CC )
2524mulid1d 7655 . 2  |-  ( A  e.  CC  ->  (
( abs `  ( exp `  ( Re `  A ) ) )  x.  1 )  =  ( abs `  ( exp `  ( Re `  A ) ) ) )
26 efgt0 11188 . . . . 5  |-  ( ( Re `  A )  e.  RR  ->  0  <  ( exp `  (
Re `  A )
) )
273, 26syl 14 . . . 4  |-  ( A  e.  CC  ->  0  <  ( exp `  (
Re `  A )
) )
28 0re 7638 . . . . 5  |-  0  e.  RR
29 ltle 7722 . . . . 5  |-  ( ( 0  e.  RR  /\  ( exp `  ( Re
`  A ) )  e.  RR )  -> 
( 0  <  ( exp `  ( Re `  A ) )  -> 
0  <_  ( exp `  ( Re `  A
) ) ) )
3028, 14, 29sylancr 408 . . . 4  |-  ( A  e.  CC  ->  (
0  <  ( exp `  ( Re `  A
) )  ->  0  <_  ( exp `  (
Re `  A )
) ) )
3127, 30mpd 13 . . 3  |-  ( A  e.  CC  ->  0  <_  ( exp `  (
Re `  A )
) )
3214, 31absidd 10779 . 2  |-  ( A  e.  CC  ->  ( abs `  ( exp `  (
Re `  A )
) )  =  ( exp `  ( Re
`  A ) ) )
3322, 25, 323eqtrd 2136 1  |-  ( A  e.  CC  ->  ( abs `  ( exp `  A
) )  =  ( exp `  ( Re
`  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1299    e. wcel 1448   class class class wbr 3875   ` cfv 5059  (class class class)co 5706   CCcc 7498   RRcr 7499   0cc0 7500   1c1 7501   _ici 7502    + caddc 7503    x. cmul 7505    < clt 7672    <_ cle 7673   Recre 10453   Imcim 10454   abscabs 10609   expce 11146
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613  ax-arch 7614  ax-caucvg 7615
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-disj 3853  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-isom 5068  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-irdg 6197  df-frec 6218  df-1o 6243  df-oadd 6247  df-er 6359  df-en 6565  df-dom 6566  df-fin 6567  df-sup 6786  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-inn 8579  df-2 8637  df-3 8638  df-4 8639  df-n0 8830  df-z 8907  df-uz 9177  df-q 9262  df-rp 9292  df-ico 9518  df-fz 9632  df-fzo 9761  df-seqfrec 10060  df-exp 10134  df-fac 10313  df-bc 10335  df-ihash 10363  df-cj 10455  df-re 10456  df-im 10457  df-rsqrt 10610  df-abs 10611  df-clim 10887  df-sumdc 10962  df-ef 11152  df-sin 11154  df-cos 11155
This theorem is referenced by:  absefib  11274
  Copyright terms: Public domain W3C validator