| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > efgt0 | GIF version | ||
| Description: The exponential of a real number is greater than 0. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| Ref | Expression |
|---|---|
| efgt0 | ⊢ (𝐴 ∈ ℝ → 0 < (exp‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reefcl 11833 | . 2 ⊢ (𝐴 ∈ ℝ → (exp‘𝐴) ∈ ℝ) | |
| 2 | rehalfcl 9218 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ) | |
| 3 | 2 | reefcld 11834 | . . . 4 ⊢ (𝐴 ∈ ℝ → (exp‘(𝐴 / 2)) ∈ ℝ) |
| 4 | 3 | sqge0d 10792 | . . 3 ⊢ (𝐴 ∈ ℝ → 0 ≤ ((exp‘(𝐴 / 2))↑2)) |
| 5 | 2 | recnd 8055 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℂ) |
| 6 | 2z 9354 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 7 | efexp 11847 | . . . . 5 ⊢ (((𝐴 / 2) ∈ ℂ ∧ 2 ∈ ℤ) → (exp‘(2 · (𝐴 / 2))) = ((exp‘(𝐴 / 2))↑2)) | |
| 8 | 5, 6, 7 | sylancl 413 | . . . 4 ⊢ (𝐴 ∈ ℝ → (exp‘(2 · (𝐴 / 2))) = ((exp‘(𝐴 / 2))↑2)) |
| 9 | recn 8012 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 10 | 2cnd 9063 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 2 ∈ ℂ) | |
| 11 | 2ap0 9083 | . . . . . . 7 ⊢ 2 # 0 | |
| 12 | 11 | a1i 9 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 2 # 0) |
| 13 | 9, 10, 12 | divcanap2d 8819 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (2 · (𝐴 / 2)) = 𝐴) |
| 14 | 13 | fveq2d 5562 | . . . 4 ⊢ (𝐴 ∈ ℝ → (exp‘(2 · (𝐴 / 2))) = (exp‘𝐴)) |
| 15 | 8, 14 | eqtr3d 2231 | . . 3 ⊢ (𝐴 ∈ ℝ → ((exp‘(𝐴 / 2))↑2) = (exp‘𝐴)) |
| 16 | 4, 15 | breqtrd 4059 | . 2 ⊢ (𝐴 ∈ ℝ → 0 ≤ (exp‘𝐴)) |
| 17 | efap0 11842 | . . 3 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) # 0) | |
| 18 | 9, 17 | syl 14 | . 2 ⊢ (𝐴 ∈ ℝ → (exp‘𝐴) # 0) |
| 19 | 1, 16, 18 | ap0gt0d 8668 | 1 ⊢ (𝐴 ∈ ℝ → 0 < (exp‘𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 class class class wbr 4033 ‘cfv 5258 (class class class)co 5922 ℂcc 7877 ℝcr 7878 0cc0 7879 · cmul 7884 < clt 8061 ≤ cle 8062 # cap 8608 / cdiv 8699 2c2 9041 ℤcz 9326 ↑cexp 10630 expce 11807 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-disj 4011 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-oadd 6478 df-er 6592 df-en 6800 df-dom 6801 df-fin 6802 df-sup 7050 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-ico 9969 df-fz 10084 df-fzo 10218 df-seqfrec 10540 df-exp 10631 df-fac 10818 df-bc 10840 df-ihash 10868 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-clim 11444 df-sumdc 11519 df-ef 11813 |
| This theorem is referenced by: rpefcl 11850 efltim 11863 absef 11935 efieq1re 11937 |
| Copyright terms: Public domain | W3C validator |