![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2idlelbas | GIF version |
Description: The base set of a two-sided ideal as structure is a left and right ideal. (Contributed by AV, 20-Feb-2025.) |
Ref | Expression |
---|---|
2idlbas.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
2idlbas.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
2idlbas.b | ⊢ 𝐵 = (Base‘𝐽) |
Ref | Expression |
---|---|
2idlelbas | ⊢ (𝜑 → (𝐵 ∈ (LIdeal‘𝑅) ∧ 𝐵 ∈ (LIdeal‘(oppr‘𝑅)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2idlbas.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
2 | 2idlbas.j | . . . 4 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
3 | 2idlbas.b | . . . 4 ⊢ 𝐵 = (Base‘𝐽) | |
4 | 1, 2, 3 | 2idlbas 14011 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐼) |
5 | eqid 2193 | . . . . . 6 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
6 | eqid 2193 | . . . . . 6 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
7 | eqid 2193 | . . . . . 6 ⊢ (LIdeal‘(oppr‘𝑅)) = (LIdeal‘(oppr‘𝑅)) | |
8 | eqid 2193 | . . . . . 6 ⊢ (2Ideal‘𝑅) = (2Ideal‘𝑅) | |
9 | 5, 6, 7, 8 | 2idlelb 14001 | . . . . 5 ⊢ (𝐼 ∈ (2Ideal‘𝑅) ↔ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ∈ (LIdeal‘(oppr‘𝑅)))) |
10 | 9 | simplbi 274 | . . . 4 ⊢ (𝐼 ∈ (2Ideal‘𝑅) → 𝐼 ∈ (LIdeal‘𝑅)) |
11 | 1, 10 | syl 14 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) |
12 | 4, 11 | eqeltrd 2270 | . 2 ⊢ (𝜑 → 𝐵 ∈ (LIdeal‘𝑅)) |
13 | 9 | simprbi 275 | . . . 4 ⊢ (𝐼 ∈ (2Ideal‘𝑅) → 𝐼 ∈ (LIdeal‘(oppr‘𝑅))) |
14 | 1, 13 | syl 14 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘(oppr‘𝑅))) |
15 | 4, 14 | eqeltrd 2270 | . 2 ⊢ (𝜑 → 𝐵 ∈ (LIdeal‘(oppr‘𝑅))) |
16 | 12, 15 | jca 306 | 1 ⊢ (𝜑 → (𝐵 ∈ (LIdeal‘𝑅) ∧ 𝐵 ∈ (LIdeal‘(oppr‘𝑅)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 ↾s cress 12619 opprcoppr 13563 LIdealclidl 13963 2Idealc2idl 13995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 df-ndx 12621 df-slot 12622 df-base 12624 df-sets 12625 df-iress 12626 df-mulr 12709 df-sca 12711 df-vsca 12712 df-ip 12713 df-lssm 13849 df-sra 13931 df-rgmod 13932 df-lidl 13965 df-2idl 13996 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |