![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rng2idlsubrng | GIF version |
Description: A two-sided ideal of a non-unital ring which is a non-unital ring is a subring of the ring. (Contributed by AV, 20-Feb-2025.) (Revised by AV, 11-Mar-2025.) |
Ref | Expression |
---|---|
rng2idlsubrng.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
rng2idlsubrng.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
rng2idlsubrng.u | ⊢ (𝜑 → (𝑅 ↾s 𝐼) ∈ Rng) |
Ref | Expression |
---|---|
rng2idlsubrng | ⊢ (𝜑 → 𝐼 ∈ (SubRng‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rng2idlsubrng.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
2 | rng2idlsubrng.u | . 2 ⊢ (𝜑 → (𝑅 ↾s 𝐼) ∈ Rng) | |
3 | rng2idlsubrng.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
4 | eqid 2189 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
5 | eqid 2189 | . . . 4 ⊢ (2Ideal‘𝑅) = (2Ideal‘𝑅) | |
6 | 4, 5 | 2idlss 13846 | . . 3 ⊢ (𝐼 ∈ (2Ideal‘𝑅) → 𝐼 ⊆ (Base‘𝑅)) |
7 | 3, 6 | syl 14 | . 2 ⊢ (𝜑 → 𝐼 ⊆ (Base‘𝑅)) |
8 | 4 | issubrng 13563 | . 2 ⊢ (𝐼 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅 ↾s 𝐼) ∈ Rng ∧ 𝐼 ⊆ (Base‘𝑅))) |
9 | 1, 2, 7, 8 | syl3anbrc 1183 | 1 ⊢ (𝜑 → 𝐼 ∈ (SubRng‘𝑅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2160 ⊆ wss 3144 ‘cfv 5235 (class class class)co 5897 Basecbs 12515 ↾s cress 12516 Rngcrng 13303 SubRngcsubrng 13561 2Idealc2idl 13832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-addcom 7942 ax-addass 7944 ax-i2m1 7947 ax-0lt1 7948 ax-0id 7950 ax-rnegex 7951 ax-pre-ltirr 7954 ax-pre-lttrn 7956 ax-pre-ltadd 7958 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-ov 5900 df-oprab 5901 df-mpo 5902 df-pnf 8025 df-mnf 8026 df-ltxr 8028 df-inn 8951 df-2 9009 df-3 9010 df-4 9011 df-5 9012 df-6 9013 df-7 9014 df-8 9015 df-ndx 12518 df-slot 12519 df-base 12521 df-sets 12522 df-iress 12523 df-mulr 12606 df-sca 12608 df-vsca 12609 df-ip 12610 df-subrng 13562 df-lssm 13686 df-sra 13768 df-rgmod 13769 df-lidl 13802 df-2idl 13833 |
This theorem is referenced by: rng2idlnsg 13850 rng2idl0 13851 rng2idlsubgsubrng 13852 |
Copyright terms: Public domain | W3C validator |