| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > flqmulnn0 | GIF version | ||
| Description: Move a nonnegative integer in and out of a floor. (Contributed by Jim Kingdon, 10-Oct-2021.) |
| Ref | Expression |
|---|---|
| flqmulnn0 | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℚ) → (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flqcl 10414 | . . . . 5 ⊢ (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ) | |
| 2 | 1 | adantl 277 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℚ) → (⌊‘𝐴) ∈ ℤ) |
| 3 | 2 | zred 9494 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℚ) → (⌊‘𝐴) ∈ ℝ) |
| 4 | qre 9745 | . . . 4 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) | |
| 5 | 4 | adantl 277 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℚ) → 𝐴 ∈ ℝ) |
| 6 | simpl 109 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℚ) → 𝑁 ∈ ℕ0) | |
| 7 | 6 | nn0red 9348 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℚ) → 𝑁 ∈ ℝ) |
| 8 | 6 | nn0ge0d 9350 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℚ) → 0 ≤ 𝑁) |
| 9 | flqle 10419 | . . . 4 ⊢ (𝐴 ∈ ℚ → (⌊‘𝐴) ≤ 𝐴) | |
| 10 | 9 | adantl 277 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℚ) → (⌊‘𝐴) ≤ 𝐴) |
| 11 | 3, 5, 7, 8, 10 | lemul2ad 9012 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℚ) → (𝑁 · (⌊‘𝐴)) ≤ (𝑁 · 𝐴)) |
| 12 | nn0z 9391 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
| 13 | zq 9746 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℚ) | |
| 14 | 12, 13 | syl 14 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℚ) |
| 15 | qmulcl 9757 | . . . 4 ⊢ ((𝑁 ∈ ℚ ∧ 𝐴 ∈ ℚ) → (𝑁 · 𝐴) ∈ ℚ) | |
| 16 | 14, 15 | sylan 283 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℚ) → (𝑁 · 𝐴) ∈ ℚ) |
| 17 | zmulcl 9425 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ (⌊‘𝐴) ∈ ℤ) → (𝑁 · (⌊‘𝐴)) ∈ ℤ) | |
| 18 | 12, 1, 17 | syl2an 289 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℚ) → (𝑁 · (⌊‘𝐴)) ∈ ℤ) |
| 19 | flqge 10423 | . . 3 ⊢ (((𝑁 · 𝐴) ∈ ℚ ∧ (𝑁 · (⌊‘𝐴)) ∈ ℤ) → ((𝑁 · (⌊‘𝐴)) ≤ (𝑁 · 𝐴) ↔ (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴)))) | |
| 20 | 16, 18, 19 | syl2anc 411 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℚ) → ((𝑁 · (⌊‘𝐴)) ≤ (𝑁 · 𝐴) ↔ (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴)))) |
| 21 | 11, 20 | mpbid 147 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℚ) → (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2175 class class class wbr 4043 ‘cfv 5270 (class class class)co 5943 ℝcr 7923 · cmul 7929 ≤ cle 8107 ℕ0cn0 9294 ℤcz 9371 ℚcq 9739 ⌊cfl 10409 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-po 4342 df-iso 4343 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-n0 9295 df-z 9372 df-q 9740 df-rp 9775 df-fl 10411 |
| This theorem is referenced by: modqmulnn 10485 |
| Copyright terms: Public domain | W3C validator |