ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flqmulnn0 GIF version

Theorem flqmulnn0 10224
Description: Move a nonnegative integer in and out of a floor. (Contributed by Jim Kingdon, 10-Oct-2021.)
Assertion
Ref Expression
flqmulnn0 ((𝑁 ∈ ℕ0𝐴 ∈ ℚ) → (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴)))

Proof of Theorem flqmulnn0
StepHypRef Expression
1 flqcl 10198 . . . . 5 (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ)
21adantl 275 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℚ) → (⌊‘𝐴) ∈ ℤ)
32zred 9304 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℚ) → (⌊‘𝐴) ∈ ℝ)
4 qre 9554 . . . 4 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
54adantl 275 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℚ) → 𝐴 ∈ ℝ)
6 simpl 108 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℚ) → 𝑁 ∈ ℕ0)
76nn0red 9159 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℚ) → 𝑁 ∈ ℝ)
86nn0ge0d 9161 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℚ) → 0 ≤ 𝑁)
9 flqle 10203 . . . 4 (𝐴 ∈ ℚ → (⌊‘𝐴) ≤ 𝐴)
109adantl 275 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℚ) → (⌊‘𝐴) ≤ 𝐴)
113, 5, 7, 8, 10lemul2ad 8826 . 2 ((𝑁 ∈ ℕ0𝐴 ∈ ℚ) → (𝑁 · (⌊‘𝐴)) ≤ (𝑁 · 𝐴))
12 nn0z 9202 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
13 zq 9555 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℚ)
1412, 13syl 14 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℚ)
15 qmulcl 9566 . . . 4 ((𝑁 ∈ ℚ ∧ 𝐴 ∈ ℚ) → (𝑁 · 𝐴) ∈ ℚ)
1614, 15sylan 281 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℚ) → (𝑁 · 𝐴) ∈ ℚ)
17 zmulcl 9235 . . . 4 ((𝑁 ∈ ℤ ∧ (⌊‘𝐴) ∈ ℤ) → (𝑁 · (⌊‘𝐴)) ∈ ℤ)
1812, 1, 17syl2an 287 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℚ) → (𝑁 · (⌊‘𝐴)) ∈ ℤ)
19 flqge 10207 . . 3 (((𝑁 · 𝐴) ∈ ℚ ∧ (𝑁 · (⌊‘𝐴)) ∈ ℤ) → ((𝑁 · (⌊‘𝐴)) ≤ (𝑁 · 𝐴) ↔ (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴))))
2016, 18, 19syl2anc 409 . 2 ((𝑁 ∈ ℕ0𝐴 ∈ ℚ) → ((𝑁 · (⌊‘𝐴)) ≤ (𝑁 · 𝐴) ↔ (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴))))
2111, 20mpbid 146 1 ((𝑁 ∈ ℕ0𝐴 ∈ ℚ) → (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 2135   class class class wbr 3976  cfv 5182  (class class class)co 5836  cr 7743   · cmul 7749  cle 7925  0cn0 9105  cz 9182  cq 9548  cfl 10193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862  ax-arch 7863
This theorem depends on definitions:  df-bi 116  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-po 4268  df-iso 4269  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-n0 9106  df-z 9183  df-q 9549  df-rp 9581  df-fl 10195
This theorem is referenced by:  modqmulnn  10267
  Copyright terms: Public domain W3C validator