![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fznn | GIF version |
Description: Finite set of sequential integers starting at 1. (Contributed by NM, 31-Aug-2011.) (Revised by Mario Carneiro, 18-Jun-2015.) |
Ref | Expression |
---|---|
fznn | ⊢ (𝑁 ∈ ℤ → (𝐾 ∈ (1...𝑁) ↔ (𝐾 ∈ ℕ ∧ 𝐾 ≤ 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuzb 10088 | . . 3 ⊢ (𝐾 ∈ (1...𝑁) ↔ (𝐾 ∈ (ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) | |
2 | elnnuz 9632 | . . . 4 ⊢ (𝐾 ∈ ℕ ↔ 𝐾 ∈ (ℤ≥‘1)) | |
3 | 2 | anbi1i 458 | . . 3 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ↔ (𝐾 ∈ (ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) |
4 | 1, 3 | bitr4i 187 | . 2 ⊢ (𝐾 ∈ (1...𝑁) ↔ (𝐾 ∈ ℕ ∧ 𝑁 ∈ (ℤ≥‘𝐾))) |
5 | nnz 9339 | . . . . 5 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℤ) | |
6 | eluz 9608 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝐾) ↔ 𝐾 ≤ 𝑁)) | |
7 | 5, 6 | sylan 283 | . . . 4 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝐾) ↔ 𝐾 ≤ 𝑁)) |
8 | 7 | ancoms 268 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (𝑁 ∈ (ℤ≥‘𝐾) ↔ 𝐾 ≤ 𝑁)) |
9 | 8 | pm5.32da 452 | . 2 ⊢ (𝑁 ∈ ℤ → ((𝐾 ∈ ℕ ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ↔ (𝐾 ∈ ℕ ∧ 𝐾 ≤ 𝑁))) |
10 | 4, 9 | bitrid 192 | 1 ⊢ (𝑁 ∈ ℤ → (𝐾 ∈ (1...𝑁) ↔ (𝐾 ∈ ℕ ∧ 𝐾 ≤ 𝑁))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2164 class class class wbr 4030 ‘cfv 5255 (class class class)co 5919 1c1 7875 ≤ cle 8057 ℕcn 8984 ℤcz 9320 ℤ≥cuz 9595 ...cfz 10077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-z 9321 df-uz 9596 df-fz 10078 |
This theorem is referenced by: sumeq2 11505 prodeq2 11703 fprodseq 11729 dvdsssfz1 11997 prmind2 12261 lgseisenlem1 15227 lgseisenlem2 15228 lgseisenlem3 15229 lgsquadlem1 15234 lgsquadlem2 15235 2sqlem8 15280 |
Copyright terms: Public domain | W3C validator |