| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fznn | GIF version | ||
| Description: Finite set of sequential integers starting at 1. (Contributed by NM, 31-Aug-2011.) (Revised by Mario Carneiro, 18-Jun-2015.) |
| Ref | Expression |
|---|---|
| fznn | ⊢ (𝑁 ∈ ℤ → (𝐾 ∈ (1...𝑁) ↔ (𝐾 ∈ ℕ ∧ 𝐾 ≤ 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuzb 10141 | . . 3 ⊢ (𝐾 ∈ (1...𝑁) ↔ (𝐾 ∈ (ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) | |
| 2 | elnnuz 9685 | . . . 4 ⊢ (𝐾 ∈ ℕ ↔ 𝐾 ∈ (ℤ≥‘1)) | |
| 3 | 2 | anbi1i 458 | . . 3 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ↔ (𝐾 ∈ (ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) |
| 4 | 1, 3 | bitr4i 187 | . 2 ⊢ (𝐾 ∈ (1...𝑁) ↔ (𝐾 ∈ ℕ ∧ 𝑁 ∈ (ℤ≥‘𝐾))) |
| 5 | nnz 9391 | . . . . 5 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℤ) | |
| 6 | eluz 9661 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝐾) ↔ 𝐾 ≤ 𝑁)) | |
| 7 | 5, 6 | sylan 283 | . . . 4 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝐾) ↔ 𝐾 ≤ 𝑁)) |
| 8 | 7 | ancoms 268 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (𝑁 ∈ (ℤ≥‘𝐾) ↔ 𝐾 ≤ 𝑁)) |
| 9 | 8 | pm5.32da 452 | . 2 ⊢ (𝑁 ∈ ℤ → ((𝐾 ∈ ℕ ∧ 𝑁 ∈ (ℤ≥‘𝐾)) ↔ (𝐾 ∈ ℕ ∧ 𝐾 ≤ 𝑁))) |
| 10 | 4, 9 | bitrid 192 | 1 ⊢ (𝑁 ∈ ℤ → (𝐾 ∈ (1...𝑁) ↔ (𝐾 ∈ ℕ ∧ 𝐾 ≤ 𝑁))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2176 class class class wbr 4044 ‘cfv 5271 (class class class)co 5944 1c1 7926 ≤ cle 8108 ℕcn 9036 ℤcz 9372 ℤ≥cuz 9648 ...cfz 10130 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-z 9373 df-uz 9649 df-fz 10131 |
| This theorem is referenced by: sumeq2 11670 prodeq2 11868 fprodseq 11894 dvdsssfz1 12163 prmind2 12442 lgseisenlem1 15547 lgseisenlem2 15548 lgseisenlem3 15549 lgsquadlem1 15554 lgsquadlem2 15555 2sqlem8 15600 |
| Copyright terms: Public domain | W3C validator |