Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eucalginv GIF version

Theorem eucalginv 11793
 Description: The invariant of the step function 𝐸 for Euclid's Algorithm is the gcd operator applied to the state. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 29-May-2014.)
Hypothesis
Ref Expression
eucalgval.1 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
Assertion
Ref Expression
eucalginv (𝑋 ∈ (ℕ0 × ℕ0) → ( gcd ‘(𝐸𝑋)) = ( gcd ‘𝑋))
Distinct variable group:   𝑥,𝑦,𝑋
Allowed substitution hints:   𝐸(𝑥,𝑦)

Proof of Theorem eucalginv
StepHypRef Expression
1 eucalgval.1 . . . 4 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
21eucalgval 11791 . . 3 (𝑋 ∈ (ℕ0 × ℕ0) → (𝐸𝑋) = if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩))
32fveq2d 5434 . 2 (𝑋 ∈ (ℕ0 × ℕ0) → ( gcd ‘(𝐸𝑋)) = ( gcd ‘if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩)))
4 1st2nd2 6082 . . . . . . . . 9 (𝑋 ∈ (ℕ0 × ℕ0) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
54adantr 274 . . . . . . . 8 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
65fveq2d 5434 . . . . . . 7 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → ( mod ‘𝑋) = ( mod ‘⟨(1st𝑋), (2nd𝑋)⟩))
7 df-ov 5786 . . . . . . 7 ((1st𝑋) mod (2nd𝑋)) = ( mod ‘⟨(1st𝑋), (2nd𝑋)⟩)
86, 7eqtr4di 2191 . . . . . 6 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → ( mod ‘𝑋) = ((1st𝑋) mod (2nd𝑋)))
98oveq2d 5799 . . . . 5 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → ((2nd𝑋) gcd ( mod ‘𝑋)) = ((2nd𝑋) gcd ((1st𝑋) mod (2nd𝑋))))
10 nnz 9117 . . . . . . 7 ((2nd𝑋) ∈ ℕ → (2nd𝑋) ∈ ℤ)
1110adantl 275 . . . . . 6 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → (2nd𝑋) ∈ ℤ)
12 xp1st 6072 . . . . . . . . . 10 (𝑋 ∈ (ℕ0 × ℕ0) → (1st𝑋) ∈ ℕ0)
1312adantr 274 . . . . . . . . 9 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → (1st𝑋) ∈ ℕ0)
1413nn0zd 9215 . . . . . . . 8 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → (1st𝑋) ∈ ℤ)
15 zmodcl 10168 . . . . . . . 8 (((1st𝑋) ∈ ℤ ∧ (2nd𝑋) ∈ ℕ) → ((1st𝑋) mod (2nd𝑋)) ∈ ℕ0)
1614, 15sylancom 417 . . . . . . 7 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → ((1st𝑋) mod (2nd𝑋)) ∈ ℕ0)
1716nn0zd 9215 . . . . . 6 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → ((1st𝑋) mod (2nd𝑋)) ∈ ℤ)
18 gcdcom 11718 . . . . . 6 (((2nd𝑋) ∈ ℤ ∧ ((1st𝑋) mod (2nd𝑋)) ∈ ℤ) → ((2nd𝑋) gcd ((1st𝑋) mod (2nd𝑋))) = (((1st𝑋) mod (2nd𝑋)) gcd (2nd𝑋)))
1911, 17, 18syl2anc 409 . . . . 5 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → ((2nd𝑋) gcd ((1st𝑋) mod (2nd𝑋))) = (((1st𝑋) mod (2nd𝑋)) gcd (2nd𝑋)))
20 modgcd 11735 . . . . . 6 (((1st𝑋) ∈ ℤ ∧ (2nd𝑋) ∈ ℕ) → (((1st𝑋) mod (2nd𝑋)) gcd (2nd𝑋)) = ((1st𝑋) gcd (2nd𝑋)))
2114, 20sylancom 417 . . . . 5 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → (((1st𝑋) mod (2nd𝑋)) gcd (2nd𝑋)) = ((1st𝑋) gcd (2nd𝑋)))
229, 19, 213eqtrd 2177 . . . 4 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → ((2nd𝑋) gcd ( mod ‘𝑋)) = ((1st𝑋) gcd (2nd𝑋)))
23 nnne0 8792 . . . . . . . . 9 ((2nd𝑋) ∈ ℕ → (2nd𝑋) ≠ 0)
2423adantl 275 . . . . . . . 8 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → (2nd𝑋) ≠ 0)
2524neneqd 2330 . . . . . . 7 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → ¬ (2nd𝑋) = 0)
2625iffalsed 3490 . . . . . 6 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩) = ⟨(2nd𝑋), ( mod ‘𝑋)⟩)
2726fveq2d 5434 . . . . 5 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → ( gcd ‘if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩)) = ( gcd ‘⟨(2nd𝑋), ( mod ‘𝑋)⟩))
28 df-ov 5786 . . . . 5 ((2nd𝑋) gcd ( mod ‘𝑋)) = ( gcd ‘⟨(2nd𝑋), ( mod ‘𝑋)⟩)
2927, 28eqtr4di 2191 . . . 4 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → ( gcd ‘if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩)) = ((2nd𝑋) gcd ( mod ‘𝑋)))
305fveq2d 5434 . . . . 5 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → ( gcd ‘𝑋) = ( gcd ‘⟨(1st𝑋), (2nd𝑋)⟩))
31 df-ov 5786 . . . . 5 ((1st𝑋) gcd (2nd𝑋)) = ( gcd ‘⟨(1st𝑋), (2nd𝑋)⟩)
3230, 31eqtr4di 2191 . . . 4 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → ( gcd ‘𝑋) = ((1st𝑋) gcd (2nd𝑋)))
3322, 29, 323eqtr4d 2183 . . 3 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) ∈ ℕ) → ( gcd ‘if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩)) = ( gcd ‘𝑋))
34 iftrue 3485 . . . . 5 ((2nd𝑋) = 0 → if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩) = 𝑋)
3534fveq2d 5434 . . . 4 ((2nd𝑋) = 0 → ( gcd ‘if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩)) = ( gcd ‘𝑋))
3635adantl 275 . . 3 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd𝑋) = 0) → ( gcd ‘if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩)) = ( gcd ‘𝑋))
37 xp2nd 6073 . . . 4 (𝑋 ∈ (ℕ0 × ℕ0) → (2nd𝑋) ∈ ℕ0)
38 elnn0 9023 . . . 4 ((2nd𝑋) ∈ ℕ0 ↔ ((2nd𝑋) ∈ ℕ ∨ (2nd𝑋) = 0))
3937, 38sylib 121 . . 3 (𝑋 ∈ (ℕ0 × ℕ0) → ((2nd𝑋) ∈ ℕ ∨ (2nd𝑋) = 0))
4033, 36, 39mpjaodan 788 . 2 (𝑋 ∈ (ℕ0 × ℕ0) → ( gcd ‘if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩)) = ( gcd ‘𝑋))
413, 40eqtrd 2173 1 (𝑋 ∈ (ℕ0 × ℕ0) → ( gcd ‘(𝐸𝑋)) = ( gcd ‘𝑋))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ∨ wo 698   = wceq 1332   ∈ wcel 1481   ≠ wne 2309  ifcif 3480  ⟨cop 3536   × cxp 4546  ‘cfv 5132  (class class class)co 5783   ∈ cmpo 5785  1st c1st 6045  2nd c2nd 6046  0cc0 7664  ℕcn 8764  ℕ0cn0 9021  ℤcz 9098   mod cmo 10146   gcd cgcd 11691 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4052  ax-sep 4055  ax-nul 4063  ax-pow 4107  ax-pr 4140  ax-un 4364  ax-setind 4461  ax-iinf 4511  ax-cnex 7755  ax-resscn 7756  ax-1cn 7757  ax-1re 7758  ax-icn 7759  ax-addcl 7760  ax-addrcl 7761  ax-mulcl 7762  ax-mulrcl 7763  ax-addcom 7764  ax-mulcom 7765  ax-addass 7766  ax-mulass 7767  ax-distr 7768  ax-i2m1 7769  ax-0lt1 7770  ax-1rid 7771  ax-0id 7772  ax-rnegex 7773  ax-precex 7774  ax-cnre 7775  ax-pre-ltirr 7776  ax-pre-ltwlin 7777  ax-pre-lttrn 7778  ax-pre-apti 7779  ax-pre-ltadd 7780  ax-pre-mulgt0 7781  ax-pre-mulext 7782  ax-arch 7783  ax-caucvg 7784 This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2692  df-sbc 2915  df-csb 3009  df-dif 3079  df-un 3081  df-in 3083  df-ss 3090  df-nul 3370  df-if 3481  df-pw 3518  df-sn 3539  df-pr 3540  df-op 3542  df-uni 3746  df-int 3781  df-iun 3824  df-br 3939  df-opab 3999  df-mpt 4000  df-tr 4036  df-id 4224  df-po 4227  df-iso 4228  df-iord 4297  df-on 4299  df-ilim 4300  df-suc 4302  df-iom 4514  df-xp 4554  df-rel 4555  df-cnv 4556  df-co 4557  df-dm 4558  df-rn 4559  df-res 4560  df-ima 4561  df-iota 5097  df-fun 5134  df-fn 5135  df-f 5136  df-f1 5137  df-fo 5138  df-f1o 5139  df-fv 5140  df-riota 5739  df-ov 5786  df-oprab 5787  df-mpo 5788  df-1st 6047  df-2nd 6048  df-recs 6211  df-frec 6297  df-sup 6881  df-pnf 7846  df-mnf 7847  df-xr 7848  df-ltxr 7849  df-le 7850  df-sub 7979  df-neg 7980  df-reap 8381  df-ap 8388  df-div 8477  df-inn 8765  df-2 8823  df-3 8824  df-4 8825  df-n0 9022  df-z 9099  df-uz 9371  df-q 9459  df-rp 9491  df-fz 9842  df-fzo 9971  df-fl 10094  df-mod 10147  df-seqfrec 10270  df-exp 10344  df-cj 10666  df-re 10667  df-im 10668  df-rsqrt 10822  df-abs 10823  df-dvds 11550  df-gcd 11692 This theorem is referenced by:  eucalg  11796
 Copyright terms: Public domain W3C validator