ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhm1 GIF version

Theorem rhm1 14131
Description: Ring homomorphisms are required to fix 1. (Contributed by Stefan O'Rear, 8-Mar-2015.)
Hypotheses
Ref Expression
rhm1.o 1 = (1r𝑅)
rhm1.n 𝑁 = (1r𝑆)
Assertion
Ref Expression
rhm1 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹1 ) = 𝑁)

Proof of Theorem rhm1
StepHypRef Expression
1 eqid 2229 . . . 4 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2 eqid 2229 . . . 4 (mulGrp‘𝑆) = (mulGrp‘𝑆)
31, 2rhmmhm 14123 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))
4 eqid 2229 . . . 4 (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅))
5 eqid 2229 . . . 4 (0g‘(mulGrp‘𝑆)) = (0g‘(mulGrp‘𝑆))
64, 5mhm0 13501 . . 3 (𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) → (𝐹‘(0g‘(mulGrp‘𝑅))) = (0g‘(mulGrp‘𝑆)))
73, 6syl 14 . 2 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(0g‘(mulGrp‘𝑅))) = (0g‘(mulGrp‘𝑆)))
8 rhmrcl1 14119 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
9 rhm1.o . . . . 5 1 = (1r𝑅)
101, 9ringidvalg 13924 . . . 4 (𝑅 ∈ Ring → 1 = (0g‘(mulGrp‘𝑅)))
1110fveq2d 5631 . . 3 (𝑅 ∈ Ring → (𝐹1 ) = (𝐹‘(0g‘(mulGrp‘𝑅))))
128, 11syl 14 . 2 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹1 ) = (𝐹‘(0g‘(mulGrp‘𝑅))))
13 rhmrcl2 14120 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
14 rhm1.n . . . 4 𝑁 = (1r𝑆)
152, 14ringidvalg 13924 . . 3 (𝑆 ∈ Ring → 𝑁 = (0g‘(mulGrp‘𝑆)))
1613, 15syl 14 . 2 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑁 = (0g‘(mulGrp‘𝑆)))
177, 12, 163eqtr4d 2272 1 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹1 ) = 𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  cfv 5318  (class class class)co 6001  0gc0g 13289   MndHom cmhm 13490  mulGrpcmgp 13883  1rcur 13922  Ringcrg 13959   RingHom crh 14114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-map 6797  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-3 9170  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-plusg 13123  df-mulr 13124  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-mhm 13492  df-grp 13536  df-ghm 13778  df-mgp 13884  df-ur 13923  df-ring 13961  df-rhm 14116
This theorem is referenced by:  rhmopp  14140  elrhmunit  14141  rhmunitinv  14142  mulgrhm2  14574  zrh1  14588
  Copyright terms: Public domain W3C validator