![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rhm1 | GIF version |
Description: Ring homomorphisms are required to fix 1. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
Ref | Expression |
---|---|
rhm1.o | ⊢ 1 = (1r‘𝑅) |
rhm1.n | ⊢ 𝑁 = (1r‘𝑆) |
Ref | Expression |
---|---|
rhm1 | ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘ 1 ) = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2189 | . . . 4 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
2 | eqid 2189 | . . . 4 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
3 | 1, 2 | rhmmhm 13534 | . . 3 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) |
4 | eqid 2189 | . . . 4 ⊢ (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅)) | |
5 | eqid 2189 | . . . 4 ⊢ (0g‘(mulGrp‘𝑆)) = (0g‘(mulGrp‘𝑆)) | |
6 | 4, 5 | mhm0 12943 | . . 3 ⊢ (𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) → (𝐹‘(0g‘(mulGrp‘𝑅))) = (0g‘(mulGrp‘𝑆))) |
7 | 3, 6 | syl 14 | . 2 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(0g‘(mulGrp‘𝑅))) = (0g‘(mulGrp‘𝑆))) |
8 | rhmrcl1 13530 | . . 3 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring) | |
9 | rhm1.o | . . . . 5 ⊢ 1 = (1r‘𝑅) | |
10 | 1, 9 | ringidvalg 13340 | . . . 4 ⊢ (𝑅 ∈ Ring → 1 = (0g‘(mulGrp‘𝑅))) |
11 | 10 | fveq2d 5541 | . . 3 ⊢ (𝑅 ∈ Ring → (𝐹‘ 1 ) = (𝐹‘(0g‘(mulGrp‘𝑅)))) |
12 | 8, 11 | syl 14 | . 2 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘ 1 ) = (𝐹‘(0g‘(mulGrp‘𝑅)))) |
13 | rhmrcl2 13531 | . . 3 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) | |
14 | rhm1.n | . . . 4 ⊢ 𝑁 = (1r‘𝑆) | |
15 | 2, 14 | ringidvalg 13340 | . . 3 ⊢ (𝑆 ∈ Ring → 𝑁 = (0g‘(mulGrp‘𝑆))) |
16 | 13, 15 | syl 14 | . 2 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑁 = (0g‘(mulGrp‘𝑆))) |
17 | 7, 12, 16 | 3eqtr4d 2232 | 1 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘ 1 ) = 𝑁) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2160 ‘cfv 5238 (class class class)co 5900 0gc0g 12772 MndHom cmhm 12932 mulGrpcmgp 13299 1rcur 13338 Ringcrg 13375 RingHom crh 13525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4136 ax-sep 4139 ax-pow 4195 ax-pr 4230 ax-un 4454 ax-setind 4557 ax-cnex 7937 ax-resscn 7938 ax-1cn 7939 ax-1re 7940 ax-icn 7941 ax-addcl 7942 ax-addrcl 7943 ax-mulcl 7944 ax-addcom 7946 ax-addass 7948 ax-i2m1 7951 ax-0lt1 7952 ax-0id 7954 ax-rnegex 7955 ax-pre-ltirr 7958 ax-pre-ltadd 7962 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3595 df-sn 3616 df-pr 3617 df-op 3619 df-uni 3828 df-int 3863 df-iun 3906 df-br 4022 df-opab 4083 df-mpt 4084 df-id 4314 df-xp 4653 df-rel 4654 df-cnv 4655 df-co 4656 df-dm 4657 df-rn 4658 df-res 4659 df-ima 4660 df-iota 5199 df-fun 5240 df-fn 5241 df-f 5242 df-f1 5243 df-fo 5244 df-f1o 5245 df-fv 5246 df-riota 5855 df-ov 5903 df-oprab 5904 df-mpo 5905 df-1st 6169 df-2nd 6170 df-map 6680 df-pnf 8029 df-mnf 8030 df-ltxr 8032 df-inn 8955 df-2 9013 df-3 9014 df-ndx 12526 df-slot 12527 df-base 12529 df-sets 12530 df-plusg 12613 df-mulr 12614 df-0g 12774 df-mgm 12843 df-sgrp 12888 df-mnd 12901 df-mhm 12934 df-grp 12971 df-ghm 13205 df-mgp 13300 df-ur 13339 df-ring 13377 df-rhm 13527 |
This theorem is referenced by: rhmopp 13551 elrhmunit 13552 rhmunitinv 13553 mulgrhm2 13933 zrh1 13946 |
Copyright terms: Public domain | W3C validator |