ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lidl1 GIF version

Theorem lidl1 13823
Description: Every ring contains a unit ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.)
Hypotheses
Ref Expression
lidl0.u 𝑈 = (LIdeal‘𝑅)
lidl1.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
lidl1 (𝑅 ∈ Ring → 𝐵𝑈)

Proof of Theorem lidl1
StepHypRef Expression
1 rlmlmod 13797 . . 3 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
2 eqid 2189 . . . 4 (Base‘(ringLMod‘𝑅)) = (Base‘(ringLMod‘𝑅))
3 eqid 2189 . . . 4 (LSubSp‘(ringLMod‘𝑅)) = (LSubSp‘(ringLMod‘𝑅))
42, 3lss1 13695 . . 3 ((ringLMod‘𝑅) ∈ LMod → (Base‘(ringLMod‘𝑅)) ∈ (LSubSp‘(ringLMod‘𝑅)))
51, 4syl 14 . 2 (𝑅 ∈ Ring → (Base‘(ringLMod‘𝑅)) ∈ (LSubSp‘(ringLMod‘𝑅)))
6 lidl1.b . . 3 𝐵 = (Base‘𝑅)
7 rlmbasg 13788 . . 3 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(ringLMod‘𝑅)))
86, 7eqtrid 2234 . 2 (𝑅 ∈ Ring → 𝐵 = (Base‘(ringLMod‘𝑅)))
9 lidl0.u . . 3 𝑈 = (LIdeal‘𝑅)
10 lidlvalg 13804 . . 3 (𝑅 ∈ Ring → (LIdeal‘𝑅) = (LSubSp‘(ringLMod‘𝑅)))
119, 10eqtrid 2234 . 2 (𝑅 ∈ Ring → 𝑈 = (LSubSp‘(ringLMod‘𝑅)))
125, 8, 113eltr4d 2273 1 (𝑅 ∈ Ring → 𝐵𝑈)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2160  cfv 5235  Basecbs 12515  Ringcrg 13367  LModclmod 13620  LSubSpclss 13685  ringLModcrglmod 13767  LIdealclidl 13800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-addcom 7942  ax-addass 7944  ax-i2m1 7947  ax-0lt1 7948  ax-0id 7950  ax-rnegex 7951  ax-pre-ltirr 7954  ax-pre-lttrn 7956  ax-pre-ltadd 7958
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-pnf 8025  df-mnf 8026  df-ltxr 8028  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-5 9012  df-6 9013  df-7 9014  df-8 9015  df-ndx 12518  df-slot 12519  df-base 12521  df-sets 12522  df-iress 12523  df-plusg 12605  df-mulr 12606  df-sca 12608  df-vsca 12609  df-ip 12610  df-0g 12766  df-mgm 12835  df-sgrp 12880  df-mnd 12893  df-grp 12963  df-minusg 12964  df-subg 13126  df-mgp 13292  df-ur 13331  df-ring 13369  df-subrg 13583  df-lmod 13622  df-lssm 13686  df-sra 13768  df-rgmod 13769  df-lidl 13802
This theorem is referenced by:  ridl1  13843  2idl1  13845
  Copyright terms: Public domain W3C validator