| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lidl0cl | GIF version | ||
| Description: An ideal contains 0. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
| Ref | Expression |
|---|---|
| lidlcl.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
| lidl0cl.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| lidl0cl | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 0 ∈ 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidl0cl.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 2 | rlm0g 14263 | . . . 4 ⊢ (𝑅 ∈ Ring → (0g‘𝑅) = (0g‘(ringLMod‘𝑅))) | |
| 3 | 2 | adantr 276 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (0g‘𝑅) = (0g‘(ringLMod‘𝑅))) |
| 4 | 1, 3 | eqtrid 2251 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 0 = (0g‘(ringLMod‘𝑅))) |
| 5 | rlmlmod 14270 | . . 3 ⊢ (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod) | |
| 6 | simpr 110 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝐼 ∈ 𝑈) | |
| 7 | lidlcl.u | . . . . 5 ⊢ 𝑈 = (LIdeal‘𝑅) | |
| 8 | lidlvalg 14277 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (LIdeal‘𝑅) = (LSubSp‘(ringLMod‘𝑅))) | |
| 9 | 8 | adantr 276 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (LIdeal‘𝑅) = (LSubSp‘(ringLMod‘𝑅))) |
| 10 | 7, 9 | eqtrid 2251 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝑈 = (LSubSp‘(ringLMod‘𝑅))) |
| 11 | 6, 10 | eleqtrd 2285 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅))) |
| 12 | eqid 2206 | . . . 4 ⊢ (0g‘(ringLMod‘𝑅)) = (0g‘(ringLMod‘𝑅)) | |
| 13 | eqid 2206 | . . . 4 ⊢ (LSubSp‘(ringLMod‘𝑅)) = (LSubSp‘(ringLMod‘𝑅)) | |
| 14 | 12, 13 | lss0cl 14175 | . . 3 ⊢ (((ringLMod‘𝑅) ∈ LMod ∧ 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅))) → (0g‘(ringLMod‘𝑅)) ∈ 𝐼) |
| 15 | 5, 11, 14 | syl2an2r 595 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (0g‘(ringLMod‘𝑅)) ∈ 𝐼) |
| 16 | 4, 15 | eqeltrd 2283 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 0 ∈ 𝐼) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ‘cfv 5276 0gc0g 13132 Ringcrg 13802 LModclmod 14093 LSubSpclss 14158 ringLModcrglmod 14240 LIdealclidl 14273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-i2m1 8037 ax-0lt1 8038 ax-0id 8040 ax-rnegex 8041 ax-pre-ltirr 8044 ax-pre-lttrn 8046 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-pnf 8116 df-mnf 8117 df-ltxr 8119 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-7 9107 df-8 9108 df-ndx 12879 df-slot 12880 df-base 12882 df-sets 12883 df-iress 12884 df-plusg 12966 df-mulr 12967 df-sca 12969 df-vsca 12970 df-ip 12971 df-0g 13134 df-mgm 13232 df-sgrp 13278 df-mnd 13293 df-grp 13379 df-minusg 13380 df-sbg 13381 df-subg 13550 df-mgp 13727 df-ur 13766 df-ring 13804 df-subrg 14025 df-lmod 14095 df-lssm 14159 df-sra 14241 df-rgmod 14242 df-lidl 14275 |
| This theorem is referenced by: lidlsubg 14292 |
| Copyright terms: Public domain | W3C validator |