![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lidlnegcl | GIF version |
Description: An ideal contains negatives. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
Ref | Expression |
---|---|
lidlcl.u | β’ π = (LIdealβπ ) |
lidlnegcl.n | β’ π = (invgβπ ) |
Ref | Expression |
---|---|
lidlnegcl | β’ ((π β Ring β§ πΌ β π β§ π β πΌ) β (πβπ) β πΌ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lidlnegcl.n | . . . . 5 β’ π = (invgβπ ) | |
2 | rlmvnegg 13654 | . . . . 5 β’ (π β Ring β (invgβπ ) = (invgβ(ringLModβπ ))) | |
3 | 1, 2 | eqtrid 2232 | . . . 4 β’ (π β Ring β π = (invgβ(ringLModβπ ))) |
4 | 3 | fveq1d 5529 | . . 3 β’ (π β Ring β (πβπ) = ((invgβ(ringLModβπ ))βπ)) |
5 | 4 | 3ad2ant1 1019 | . 2 β’ ((π β Ring β§ πΌ β π β§ π β πΌ) β (πβπ) = ((invgβ(ringLModβπ ))βπ)) |
6 | rlmlmod 13653 | . . . 4 β’ (π β Ring β (ringLModβπ ) β LMod) | |
7 | 6 | 3ad2ant1 1019 | . . 3 β’ ((π β Ring β§ πΌ β π β§ π β πΌ) β (ringLModβπ ) β LMod) |
8 | simpr 110 | . . . . 5 β’ ((π β Ring β§ πΌ β π) β πΌ β π) | |
9 | lidlcl.u | . . . . . . 7 β’ π = (LIdealβπ ) | |
10 | lidlvalg 13660 | . . . . . . 7 β’ (π β Ring β (LIdealβπ ) = (LSubSpβ(ringLModβπ ))) | |
11 | 9, 10 | eqtrid 2232 | . . . . . 6 β’ (π β Ring β π = (LSubSpβ(ringLModβπ ))) |
12 | 11 | adantr 276 | . . . . 5 β’ ((π β Ring β§ πΌ β π) β π = (LSubSpβ(ringLModβπ ))) |
13 | 8, 12 | eleqtrd 2266 | . . . 4 β’ ((π β Ring β§ πΌ β π) β πΌ β (LSubSpβ(ringLModβπ ))) |
14 | 13 | 3adant3 1018 | . . 3 β’ ((π β Ring β§ πΌ β π β§ π β πΌ) β πΌ β (LSubSpβ(ringLModβπ ))) |
15 | simp3 1000 | . . 3 β’ ((π β Ring β§ πΌ β π β§ π β πΌ) β π β πΌ) | |
16 | eqid 2187 | . . . 4 β’ (LSubSpβ(ringLModβπ )) = (LSubSpβ(ringLModβπ )) | |
17 | eqid 2187 | . . . 4 β’ (invgβ(ringLModβπ )) = (invgβ(ringLModβπ )) | |
18 | 16, 17 | lssvnegcl 13565 | . . 3 β’ (((ringLModβπ ) β LMod β§ πΌ β (LSubSpβ(ringLModβπ )) β§ π β πΌ) β ((invgβ(ringLModβπ ))βπ) β πΌ) |
19 | 7, 14, 15, 18 | syl3anc 1248 | . 2 β’ ((π β Ring β§ πΌ β π β§ π β πΌ) β ((invgβ(ringLModβπ ))βπ) β πΌ) |
20 | 5, 19 | eqeltrd 2264 | 1 β’ ((π β Ring β§ πΌ β π β§ π β πΌ) β (πβπ) β πΌ) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 β§ w3a 979 = wceq 1363 β wcel 2158 βcfv 5228 invgcminusg 12900 Ringcrg 13248 LModclmod 13476 LSubSpclss 13541 ringLModcrglmod 13623 LIdealclidl 13656 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-addcom 7925 ax-addass 7927 ax-i2m1 7930 ax-0lt1 7931 ax-0id 7933 ax-rnegex 7934 ax-pre-ltirr 7937 ax-pre-lttrn 7939 ax-pre-ltadd 7941 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6155 df-2nd 6156 df-pnf 8008 df-mnf 8009 df-ltxr 8011 df-inn 8934 df-2 8992 df-3 8993 df-4 8994 df-5 8995 df-6 8996 df-7 8997 df-8 8998 df-ndx 12479 df-slot 12480 df-base 12482 df-sets 12483 df-iress 12484 df-plusg 12564 df-mulr 12565 df-sca 12567 df-vsca 12568 df-ip 12569 df-0g 12725 df-mgm 12794 df-sgrp 12827 df-mnd 12840 df-grp 12902 df-minusg 12903 df-sbg 12904 df-subg 13062 df-mgp 13173 df-ur 13212 df-ring 13250 df-subrg 13439 df-lmod 13478 df-lssm 13542 df-sra 13624 df-rgmod 13625 df-lidl 13658 |
This theorem is referenced by: lidlsubg 13675 |
Copyright terms: Public domain | W3C validator |