ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lidlnegcl GIF version

Theorem lidlnegcl 13981
Description: An ideal contains negatives. (Contributed by Stefan O'Rear, 3-Jan-2015.)
Hypotheses
Ref Expression
lidlcl.u 𝑈 = (LIdeal‘𝑅)
lidlnegcl.n 𝑁 = (invg𝑅)
Assertion
Ref Expression
lidlnegcl ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋𝐼) → (𝑁𝑋) ∈ 𝐼)

Proof of Theorem lidlnegcl
StepHypRef Expression
1 lidlnegcl.n . . . . 5 𝑁 = (invg𝑅)
2 rlmvnegg 13961 . . . . 5 (𝑅 ∈ Ring → (invg𝑅) = (invg‘(ringLMod‘𝑅)))
31, 2eqtrid 2238 . . . 4 (𝑅 ∈ Ring → 𝑁 = (invg‘(ringLMod‘𝑅)))
43fveq1d 5556 . . 3 (𝑅 ∈ Ring → (𝑁𝑋) = ((invg‘(ringLMod‘𝑅))‘𝑋))
543ad2ant1 1020 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋𝐼) → (𝑁𝑋) = ((invg‘(ringLMod‘𝑅))‘𝑋))
6 rlmlmod 13960 . . . 4 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
763ad2ant1 1020 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋𝐼) → (ringLMod‘𝑅) ∈ LMod)
8 simpr 110 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → 𝐼𝑈)
9 lidlcl.u . . . . . . 7 𝑈 = (LIdeal‘𝑅)
10 lidlvalg 13967 . . . . . . 7 (𝑅 ∈ Ring → (LIdeal‘𝑅) = (LSubSp‘(ringLMod‘𝑅)))
119, 10eqtrid 2238 . . . . . 6 (𝑅 ∈ Ring → 𝑈 = (LSubSp‘(ringLMod‘𝑅)))
1211adantr 276 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → 𝑈 = (LSubSp‘(ringLMod‘𝑅)))
138, 12eleqtrd 2272 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅)))
14133adant3 1019 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋𝐼) → 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅)))
15 simp3 1001 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋𝐼) → 𝑋𝐼)
16 eqid 2193 . . . 4 (LSubSp‘(ringLMod‘𝑅)) = (LSubSp‘(ringLMod‘𝑅))
17 eqid 2193 . . . 4 (invg‘(ringLMod‘𝑅)) = (invg‘(ringLMod‘𝑅))
1816, 17lssvnegcl 13872 . . 3 (((ringLMod‘𝑅) ∈ LMod ∧ 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅)) ∧ 𝑋𝐼) → ((invg‘(ringLMod‘𝑅))‘𝑋) ∈ 𝐼)
197, 14, 15, 18syl3anc 1249 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋𝐼) → ((invg‘(ringLMod‘𝑅))‘𝑋) ∈ 𝐼)
205, 19eqeltrd 2270 1 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋𝐼) → (𝑁𝑋) ∈ 𝐼)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164  cfv 5254  invgcminusg 13073  Ringcrg 13492  LModclmod 13783  LSubSpclss 13848  ringLModcrglmod 13930  LIdealclidl 13963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-sca 12711  df-vsca 12712  df-ip 12713  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-sbg 13077  df-subg 13240  df-mgp 13417  df-ur 13456  df-ring 13494  df-subrg 13715  df-lmod 13785  df-lssm 13849  df-sra 13931  df-rgmod 13932  df-lidl 13965
This theorem is referenced by:  lidlsubg  13982
  Copyright terms: Public domain W3C validator