![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lidlnegcl | GIF version |
Description: An ideal contains negatives. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
Ref | Expression |
---|---|
lidlcl.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
lidlnegcl.n | ⊢ 𝑁 = (invg‘𝑅) |
Ref | Expression |
---|---|
lidlnegcl | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) → (𝑁‘𝑋) ∈ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lidlnegcl.n | . . . . 5 ⊢ 𝑁 = (invg‘𝑅) | |
2 | rlmvnegg 13964 | . . . . 5 ⊢ (𝑅 ∈ Ring → (invg‘𝑅) = (invg‘(ringLMod‘𝑅))) | |
3 | 1, 2 | eqtrid 2238 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑁 = (invg‘(ringLMod‘𝑅))) |
4 | 3 | fveq1d 5557 | . . 3 ⊢ (𝑅 ∈ Ring → (𝑁‘𝑋) = ((invg‘(ringLMod‘𝑅))‘𝑋)) |
5 | 4 | 3ad2ant1 1020 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) → (𝑁‘𝑋) = ((invg‘(ringLMod‘𝑅))‘𝑋)) |
6 | rlmlmod 13963 | . . . 4 ⊢ (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod) | |
7 | 6 | 3ad2ant1 1020 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) → (ringLMod‘𝑅) ∈ LMod) |
8 | simpr 110 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝐼 ∈ 𝑈) | |
9 | lidlcl.u | . . . . . . 7 ⊢ 𝑈 = (LIdeal‘𝑅) | |
10 | lidlvalg 13970 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (LIdeal‘𝑅) = (LSubSp‘(ringLMod‘𝑅))) | |
11 | 9, 10 | eqtrid 2238 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑈 = (LSubSp‘(ringLMod‘𝑅))) |
12 | 11 | adantr 276 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝑈 = (LSubSp‘(ringLMod‘𝑅))) |
13 | 8, 12 | eleqtrd 2272 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅))) |
14 | 13 | 3adant3 1019 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) → 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅))) |
15 | simp3 1001 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) → 𝑋 ∈ 𝐼) | |
16 | eqid 2193 | . . . 4 ⊢ (LSubSp‘(ringLMod‘𝑅)) = (LSubSp‘(ringLMod‘𝑅)) | |
17 | eqid 2193 | . . . 4 ⊢ (invg‘(ringLMod‘𝑅)) = (invg‘(ringLMod‘𝑅)) | |
18 | 16, 17 | lssvnegcl 13875 | . . 3 ⊢ (((ringLMod‘𝑅) ∈ LMod ∧ 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅)) ∧ 𝑋 ∈ 𝐼) → ((invg‘(ringLMod‘𝑅))‘𝑋) ∈ 𝐼) |
19 | 7, 14, 15, 18 | syl3anc 1249 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) → ((invg‘(ringLMod‘𝑅))‘𝑋) ∈ 𝐼) |
20 | 5, 19 | eqeltrd 2270 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) → (𝑁‘𝑋) ∈ 𝐼) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ‘cfv 5255 invgcminusg 13076 Ringcrg 13495 LModclmod 13786 LSubSpclss 13851 ringLModcrglmod 13933 LIdealclidl 13966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-pre-ltirr 7986 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 df-ndx 12624 df-slot 12625 df-base 12627 df-sets 12628 df-iress 12629 df-plusg 12711 df-mulr 12712 df-sca 12714 df-vsca 12715 df-ip 12716 df-0g 12872 df-mgm 12942 df-sgrp 12988 df-mnd 13001 df-grp 13078 df-minusg 13079 df-sbg 13080 df-subg 13243 df-mgp 13420 df-ur 13459 df-ring 13497 df-subrg 13718 df-lmod 13788 df-lssm 13852 df-sra 13934 df-rgmod 13935 df-lidl 13968 |
This theorem is referenced by: lidlsubg 13985 |
Copyright terms: Public domain | W3C validator |