| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gt0ap0d | GIF version | ||
| Description: Positive implies apart from zero. Because of the way we define #, 𝐴 must be an element of ℝ, not just ℝ*. (Contributed by Jim Kingdon, 27-Feb-2020.) |
| Ref | Expression |
|---|---|
| gt0ap0d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| gt0ap0d.2 | ⊢ (𝜑 → 0 < 𝐴) |
| Ref | Expression |
|---|---|
| gt0ap0d | ⊢ (𝜑 → 𝐴 # 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gt0ap0d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | gt0ap0d.2 | . 2 ⊢ (𝜑 → 0 < 𝐴) | |
| 3 | gt0ap0 8719 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 # 0) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → 𝐴 # 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 class class class wbr 4051 ℝcr 7944 0cc0 7945 < clt 8127 # cap 8674 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-iota 5241 df-fun 5282 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-pnf 8129 df-mnf 8130 df-ltxr 8132 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 |
| This theorem is referenced by: prodgt0gt0 8944 prodgt0 8945 ltdiv1 8961 ltmuldiv 8967 ledivmul 8970 lt2mul2div 8972 lemuldiv 8974 ltrec 8976 lerec 8977 ltrec1 8981 lerec2 8982 ledivdiv 8983 lediv2 8984 ltdiv23 8985 lediv23 8986 lediv12a 8987 recp1lt1 8992 ledivp1 8996 nnap0 9085 rpap0 9812 modq0 10496 mulqmod0 10497 negqmod0 10498 modqlt 10500 modqdiffl 10502 modqid0 10517 modqcyc 10526 modqmuladdnn0 10535 q2txmodxeq0 10551 modqdi 10559 ltexp2a 10758 leexp2a 10759 expnbnd 10830 expcanlem 10882 expcan 10883 resqrexlemover 11396 resqrexlemcalc1 11400 resqrexlemcalc2 11401 ltabs 11473 divcnv 11883 expcnvre 11889 georeclim 11899 geoisumr 11904 cvgratnnlembern 11909 cvgratnnlemfm 11915 cvgratz 11918 cnopnap 15158 reeff1oleme 15319 tangtx 15385 mersenne 15544 perfectlem2 15547 lgsquadlem1 15629 lgsquadlem2 15630 trirec0 16124 ltlenmkv 16150 |
| Copyright terms: Public domain | W3C validator |