ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gt0ap0d GIF version

Theorem gt0ap0d 8004
Description: Positive implies apart from zero. Because of the way we define #, 𝐴 must be an element of , not just *. (Contributed by Jim Kingdon, 27-Feb-2020.)
Hypotheses
Ref Expression
gt0ap0d.1 (𝜑𝐴 ∈ ℝ)
gt0ap0d.2 (𝜑 → 0 < 𝐴)
Assertion
Ref Expression
gt0ap0d (𝜑𝐴 # 0)

Proof of Theorem gt0ap0d
StepHypRef Expression
1 gt0ap0d.1 . 2 (𝜑𝐴 ∈ ℝ)
2 gt0ap0d.2 . 2 (𝜑 → 0 < 𝐴)
3 gt0ap0 8001 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 # 0)
41, 2, 3syl2anc 403 1 (𝜑𝐴 # 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1434   class class class wbr 3811  cr 7251  0cc0 7252   < clt 7424   # cap 7957
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 3999  ax-un 4223  ax-setind 4315  ax-cnex 7338  ax-resscn 7339  ax-1cn 7340  ax-1re 7341  ax-icn 7342  ax-addcl 7343  ax-addrcl 7344  ax-mulcl 7345  ax-mulrcl 7346  ax-addcom 7347  ax-mulcom 7348  ax-addass 7349  ax-mulass 7350  ax-distr 7351  ax-i2m1 7352  ax-0lt1 7353  ax-1rid 7354  ax-0id 7355  ax-rnegex 7356  ax-precex 7357  ax-cnre 7358  ax-pre-ltirr 7359  ax-pre-lttrn 7361  ax-pre-apti 7362  ax-pre-ltadd 7363  ax-pre-mulgt0 7364
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-br 3812  df-opab 3866  df-id 4083  df-xp 4406  df-rel 4407  df-cnv 4408  df-co 4409  df-dm 4410  df-iota 4933  df-fun 4970  df-fv 4976  df-riota 5546  df-ov 5593  df-oprab 5594  df-mpt2 5595  df-pnf 7426  df-mnf 7427  df-ltxr 7429  df-sub 7557  df-neg 7558  df-reap 7951  df-ap 7958
This theorem is referenced by:  prodgt0gt0  8205  prodgt0  8206  ltdiv1  8222  ltmuldiv  8228  ledivmul  8231  lt2mul2div  8233  lemuldiv  8235  ltrec  8237  lerec  8238  ltrec1  8242  lerec2  8243  ledivdiv  8244  lediv2  8245  ltdiv23  8246  lediv23  8247  lediv12a  8248  recp1lt1  8253  ledivp1  8257  nnap0  8344  rpap0  9044  modq0  9624  mulqmod0  9625  negqmod0  9626  modqlt  9628  modqdiffl  9630  modqid0  9645  modqcyc  9654  modqmuladdnn0  9663  q2txmodxeq0  9679  modqdi  9687  ltexp2a  9843  leexp2a  9844  expnbnd  9911  expcanlem  9958  expcan  9959  resqrexlemover  10269  resqrexlemcalc1  10273  resqrexlemcalc2  10274  ltabs  10346
  Copyright terms: Public domain W3C validator