![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > gt0ap0d | GIF version |
Description: Positive implies apart from zero. Because of the way we define #, 𝐴 must be an element of ℝ, not just ℝ*. (Contributed by Jim Kingdon, 27-Feb-2020.) |
Ref | Expression |
---|---|
gt0ap0d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
gt0ap0d.2 | ⊢ (𝜑 → 0 < 𝐴) |
Ref | Expression |
---|---|
gt0ap0d | ⊢ (𝜑 → 𝐴 # 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gt0ap0d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | gt0ap0d.2 | . 2 ⊢ (𝜑 → 0 < 𝐴) | |
3 | gt0ap0 8601 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 # 0) | |
4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → 𝐴 # 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2160 class class class wbr 4018 ℝcr 7828 0cc0 7829 < clt 8010 # cap 8556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-cnex 7920 ax-resscn 7921 ax-1cn 7922 ax-1re 7923 ax-icn 7924 ax-addcl 7925 ax-addrcl 7926 ax-mulcl 7927 ax-mulrcl 7928 ax-addcom 7929 ax-mulcom 7930 ax-addass 7931 ax-mulass 7932 ax-distr 7933 ax-i2m1 7934 ax-0lt1 7935 ax-1rid 7936 ax-0id 7937 ax-rnegex 7938 ax-precex 7939 ax-cnre 7940 ax-pre-ltirr 7941 ax-pre-lttrn 7943 ax-pre-apti 7944 ax-pre-ltadd 7945 ax-pre-mulgt0 7946 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-iota 5193 df-fun 5233 df-fv 5239 df-riota 5847 df-ov 5894 df-oprab 5895 df-mpo 5896 df-pnf 8012 df-mnf 8013 df-ltxr 8015 df-sub 8148 df-neg 8149 df-reap 8550 df-ap 8557 |
This theorem is referenced by: prodgt0gt0 8826 prodgt0 8827 ltdiv1 8843 ltmuldiv 8849 ledivmul 8852 lt2mul2div 8854 lemuldiv 8856 ltrec 8858 lerec 8859 ltrec1 8863 lerec2 8864 ledivdiv 8865 lediv2 8866 ltdiv23 8867 lediv23 8868 lediv12a 8869 recp1lt1 8874 ledivp1 8878 nnap0 8966 rpap0 9688 modq0 10347 mulqmod0 10348 negqmod0 10349 modqlt 10351 modqdiffl 10353 modqid0 10368 modqcyc 10377 modqmuladdnn0 10386 q2txmodxeq0 10402 modqdi 10410 ltexp2a 10590 leexp2a 10591 expnbnd 10662 expcanlem 10713 expcan 10714 resqrexlemover 11037 resqrexlemcalc1 11041 resqrexlemcalc2 11042 ltabs 11114 divcnv 11523 expcnvre 11529 georeclim 11539 geoisumr 11544 cvgratnnlembern 11549 cvgratnnlemfm 11555 cvgratz 11558 cnopnap 14491 reeff1oleme 14590 tangtx 14656 trirec0 15190 ltlenmkv 15216 |
Copyright terms: Public domain | W3C validator |