| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gt0ap0d | GIF version | ||
| Description: Positive implies apart from zero. Because of the way we define #, 𝐴 must be an element of ℝ, not just ℝ*. (Contributed by Jim Kingdon, 27-Feb-2020.) |
| Ref | Expression |
|---|---|
| gt0ap0d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| gt0ap0d.2 | ⊢ (𝜑 → 0 < 𝐴) |
| Ref | Expression |
|---|---|
| gt0ap0d | ⊢ (𝜑 → 𝐴 # 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gt0ap0d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | gt0ap0d.2 | . 2 ⊢ (𝜑 → 0 < 𝐴) | |
| 3 | gt0ap0 8698 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 # 0) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → 𝐴 # 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 class class class wbr 4043 ℝcr 7923 0cc0 7924 < clt 8106 # cap 8653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-ltxr 8111 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 |
| This theorem is referenced by: prodgt0gt0 8923 prodgt0 8924 ltdiv1 8940 ltmuldiv 8946 ledivmul 8949 lt2mul2div 8951 lemuldiv 8953 ltrec 8955 lerec 8956 ltrec1 8960 lerec2 8961 ledivdiv 8962 lediv2 8963 ltdiv23 8964 lediv23 8965 lediv12a 8966 recp1lt1 8971 ledivp1 8975 nnap0 9064 rpap0 9791 modq0 10472 mulqmod0 10473 negqmod0 10474 modqlt 10476 modqdiffl 10478 modqid0 10493 modqcyc 10502 modqmuladdnn0 10511 q2txmodxeq0 10527 modqdi 10535 ltexp2a 10734 leexp2a 10735 expnbnd 10806 expcanlem 10858 expcan 10859 resqrexlemover 11263 resqrexlemcalc1 11267 resqrexlemcalc2 11268 ltabs 11340 divcnv 11750 expcnvre 11756 georeclim 11766 geoisumr 11771 cvgratnnlembern 11776 cvgratnnlemfm 11782 cvgratz 11785 cnopnap 15025 reeff1oleme 15186 tangtx 15252 mersenne 15411 perfectlem2 15414 lgsquadlem1 15496 lgsquadlem2 15497 trirec0 15916 ltlenmkv 15942 |
| Copyright terms: Public domain | W3C validator |