| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gt0ap0d | GIF version | ||
| Description: Positive implies apart from zero. Because of the way we define #, 𝐴 must be an element of ℝ, not just ℝ*. (Contributed by Jim Kingdon, 27-Feb-2020.) |
| Ref | Expression |
|---|---|
| gt0ap0d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| gt0ap0d.2 | ⊢ (𝜑 → 0 < 𝐴) |
| Ref | Expression |
|---|---|
| gt0ap0d | ⊢ (𝜑 → 𝐴 # 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gt0ap0d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | gt0ap0d.2 | . 2 ⊢ (𝜑 → 0 < 𝐴) | |
| 3 | gt0ap0 8672 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 # 0) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → 𝐴 # 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 class class class wbr 4034 ℝcr 7897 0cc0 7898 < clt 8080 # cap 8627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-mulrcl 7997 ax-addcom 7998 ax-mulcom 7999 ax-addass 8000 ax-mulass 8001 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-1rid 8005 ax-0id 8006 ax-rnegex 8007 ax-precex 8008 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-lttrn 8012 ax-pre-apti 8013 ax-pre-ltadd 8014 ax-pre-mulgt0 8015 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8082 df-mnf 8083 df-ltxr 8085 df-sub 8218 df-neg 8219 df-reap 8621 df-ap 8628 |
| This theorem is referenced by: prodgt0gt0 8897 prodgt0 8898 ltdiv1 8914 ltmuldiv 8920 ledivmul 8923 lt2mul2div 8925 lemuldiv 8927 ltrec 8929 lerec 8930 ltrec1 8934 lerec2 8935 ledivdiv 8936 lediv2 8937 ltdiv23 8938 lediv23 8939 lediv12a 8940 recp1lt1 8945 ledivp1 8949 nnap0 9038 rpap0 9764 modq0 10440 mulqmod0 10441 negqmod0 10442 modqlt 10444 modqdiffl 10446 modqid0 10461 modqcyc 10470 modqmuladdnn0 10479 q2txmodxeq0 10495 modqdi 10503 ltexp2a 10702 leexp2a 10703 expnbnd 10774 expcanlem 10826 expcan 10827 resqrexlemover 11194 resqrexlemcalc1 11198 resqrexlemcalc2 11199 ltabs 11271 divcnv 11681 expcnvre 11687 georeclim 11697 geoisumr 11702 cvgratnnlembern 11707 cvgratnnlemfm 11713 cvgratz 11716 cnopnap 14955 reeff1oleme 15116 tangtx 15182 mersenne 15341 perfectlem2 15344 lgsquadlem1 15426 lgsquadlem2 15427 trirec0 15801 ltlenmkv 15827 |
| Copyright terms: Public domain | W3C validator |