| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gt0ap0d | GIF version | ||
| Description: Positive implies apart from zero. Because of the way we define #, 𝐴 must be an element of ℝ, not just ℝ*. (Contributed by Jim Kingdon, 27-Feb-2020.) |
| Ref | Expression |
|---|---|
| gt0ap0d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| gt0ap0d.2 | ⊢ (𝜑 → 0 < 𝐴) |
| Ref | Expression |
|---|---|
| gt0ap0d | ⊢ (𝜑 → 𝐴 # 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gt0ap0d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | gt0ap0d.2 | . 2 ⊢ (𝜑 → 0 < 𝐴) | |
| 3 | gt0ap0 8769 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 # 0) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → 𝐴 # 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 class class class wbr 4082 ℝcr 7994 0cc0 7995 < clt 8177 # cap 8724 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-ltxr 8182 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 |
| This theorem is referenced by: prodgt0gt0 8994 prodgt0 8995 ltdiv1 9011 ltmuldiv 9017 ledivmul 9020 lt2mul2div 9022 lemuldiv 9024 ltrec 9026 lerec 9027 ltrec1 9031 lerec2 9032 ledivdiv 9033 lediv2 9034 ltdiv23 9035 lediv23 9036 lediv12a 9037 recp1lt1 9042 ledivp1 9046 nnap0 9135 rpap0 9862 modq0 10546 mulqmod0 10547 negqmod0 10548 modqlt 10550 modqdiffl 10552 modqid0 10567 modqcyc 10576 modqmuladdnn0 10585 q2txmodxeq0 10601 modqdi 10609 ltexp2a 10808 leexp2a 10809 expnbnd 10880 expcanlem 10932 expcan 10933 resqrexlemover 11516 resqrexlemcalc1 11520 resqrexlemcalc2 11521 ltabs 11593 divcnv 12003 expcnvre 12009 georeclim 12019 geoisumr 12024 cvgratnnlembern 12029 cvgratnnlemfm 12035 cvgratz 12038 cnopnap 15279 reeff1oleme 15440 tangtx 15506 mersenne 15665 perfectlem2 15668 lgsquadlem1 15750 lgsquadlem2 15751 trirec0 16371 ltlenmkv 16397 |
| Copyright terms: Public domain | W3C validator |