![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > gt0ap0d | GIF version |
Description: Positive implies apart from zero. Because of the way we define #, 𝐴 must be an element of ℝ, not just ℝ*. (Contributed by Jim Kingdon, 27-Feb-2020.) |
Ref | Expression |
---|---|
gt0ap0d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
gt0ap0d.2 | ⊢ (𝜑 → 0 < 𝐴) |
Ref | Expression |
---|---|
gt0ap0d | ⊢ (𝜑 → 𝐴 # 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gt0ap0d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | gt0ap0d.2 | . 2 ⊢ (𝜑 → 0 < 𝐴) | |
3 | gt0ap0 8647 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 # 0) | |
4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → 𝐴 # 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 class class class wbr 4030 ℝcr 7873 0cc0 7874 < clt 8056 # cap 8602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 |
This theorem is referenced by: prodgt0gt0 8872 prodgt0 8873 ltdiv1 8889 ltmuldiv 8895 ledivmul 8898 lt2mul2div 8900 lemuldiv 8902 ltrec 8904 lerec 8905 ltrec1 8909 lerec2 8910 ledivdiv 8911 lediv2 8912 ltdiv23 8913 lediv23 8914 lediv12a 8915 recp1lt1 8920 ledivp1 8924 nnap0 9013 rpap0 9739 modq0 10403 mulqmod0 10404 negqmod0 10405 modqlt 10407 modqdiffl 10409 modqid0 10424 modqcyc 10433 modqmuladdnn0 10442 q2txmodxeq0 10458 modqdi 10466 ltexp2a 10665 leexp2a 10666 expnbnd 10737 expcanlem 10789 expcan 10790 resqrexlemover 11157 resqrexlemcalc1 11161 resqrexlemcalc2 11162 ltabs 11234 divcnv 11643 expcnvre 11649 georeclim 11659 geoisumr 11664 cvgratnnlembern 11669 cvgratnnlemfm 11675 cvgratz 11678 cnopnap 14790 reeff1oleme 14948 tangtx 15014 lgsquadlem1 15234 lgsquadlem2 15235 trirec0 15604 ltlenmkv 15630 |
Copyright terms: Public domain | W3C validator |