Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > gt0ap0d | GIF version |
Description: Positive implies apart from zero. Because of the way we define #, 𝐴 must be an element of ℝ, not just ℝ*. (Contributed by Jim Kingdon, 27-Feb-2020.) |
Ref | Expression |
---|---|
gt0ap0d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
gt0ap0d.2 | ⊢ (𝜑 → 0 < 𝐴) |
Ref | Expression |
---|---|
gt0ap0d | ⊢ (𝜑 → 𝐴 # 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gt0ap0d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | gt0ap0d.2 | . 2 ⊢ (𝜑 → 0 < 𝐴) | |
3 | gt0ap0 8524 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 # 0) | |
4 | 1, 2, 3 | syl2anc 409 | 1 ⊢ (𝜑 → 𝐴 # 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 class class class wbr 3982 ℝcr 7752 0cc0 7753 < clt 7933 # cap 8479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-ltxr 7938 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 |
This theorem is referenced by: prodgt0gt0 8746 prodgt0 8747 ltdiv1 8763 ltmuldiv 8769 ledivmul 8772 lt2mul2div 8774 lemuldiv 8776 ltrec 8778 lerec 8779 ltrec1 8783 lerec2 8784 ledivdiv 8785 lediv2 8786 ltdiv23 8787 lediv23 8788 lediv12a 8789 recp1lt1 8794 ledivp1 8798 nnap0 8886 rpap0 9606 modq0 10264 mulqmod0 10265 negqmod0 10266 modqlt 10268 modqdiffl 10270 modqid0 10285 modqcyc 10294 modqmuladdnn0 10303 q2txmodxeq0 10319 modqdi 10327 ltexp2a 10507 leexp2a 10508 expnbnd 10578 expcanlem 10628 expcan 10629 resqrexlemover 10952 resqrexlemcalc1 10956 resqrexlemcalc2 10957 ltabs 11029 divcnv 11438 expcnvre 11444 georeclim 11454 geoisumr 11459 cvgratnnlembern 11464 cvgratnnlemfm 11470 cvgratz 11473 cnopnap 13234 reeff1oleme 13333 tangtx 13399 trirec0 13923 |
Copyright terms: Public domain | W3C validator |