ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gt0ap0d GIF version

Theorem gt0ap0d 8604
Description: Positive implies apart from zero. Because of the way we define #, 𝐴 must be an element of , not just *. (Contributed by Jim Kingdon, 27-Feb-2020.)
Hypotheses
Ref Expression
gt0ap0d.1 (𝜑𝐴 ∈ ℝ)
gt0ap0d.2 (𝜑 → 0 < 𝐴)
Assertion
Ref Expression
gt0ap0d (𝜑𝐴 # 0)

Proof of Theorem gt0ap0d
StepHypRef Expression
1 gt0ap0d.1 . 2 (𝜑𝐴 ∈ ℝ)
2 gt0ap0d.2 . 2 (𝜑 → 0 < 𝐴)
3 gt0ap0 8601 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 # 0)
41, 2, 3syl2anc 411 1 (𝜑𝐴 # 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2160   class class class wbr 4018  cr 7828  0cc0 7829   < clt 8010   # cap 8556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7920  ax-resscn 7921  ax-1cn 7922  ax-1re 7923  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-mulrcl 7928  ax-addcom 7929  ax-mulcom 7930  ax-addass 7931  ax-mulass 7932  ax-distr 7933  ax-i2m1 7934  ax-0lt1 7935  ax-1rid 7936  ax-0id 7937  ax-rnegex 7938  ax-precex 7939  ax-cnre 7940  ax-pre-ltirr 7941  ax-pre-lttrn 7943  ax-pre-apti 7944  ax-pre-ltadd 7945  ax-pre-mulgt0 7946
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-iota 5193  df-fun 5233  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-pnf 8012  df-mnf 8013  df-ltxr 8015  df-sub 8148  df-neg 8149  df-reap 8550  df-ap 8557
This theorem is referenced by:  prodgt0gt0  8826  prodgt0  8827  ltdiv1  8843  ltmuldiv  8849  ledivmul  8852  lt2mul2div  8854  lemuldiv  8856  ltrec  8858  lerec  8859  ltrec1  8863  lerec2  8864  ledivdiv  8865  lediv2  8866  ltdiv23  8867  lediv23  8868  lediv12a  8869  recp1lt1  8874  ledivp1  8878  nnap0  8966  rpap0  9688  modq0  10347  mulqmod0  10348  negqmod0  10349  modqlt  10351  modqdiffl  10353  modqid0  10368  modqcyc  10377  modqmuladdnn0  10386  q2txmodxeq0  10402  modqdi  10410  ltexp2a  10590  leexp2a  10591  expnbnd  10662  expcanlem  10713  expcan  10714  resqrexlemover  11037  resqrexlemcalc1  11041  resqrexlemcalc2  11042  ltabs  11114  divcnv  11523  expcnvre  11529  georeclim  11539  geoisumr  11544  cvgratnnlembern  11549  cvgratnnlemfm  11555  cvgratz  11558  cnopnap  14491  reeff1oleme  14590  tangtx  14656  trirec0  15190  ltlenmkv  15216
  Copyright terms: Public domain W3C validator