| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gt0ap0d | GIF version | ||
| Description: Positive implies apart from zero. Because of the way we define #, 𝐴 must be an element of ℝ, not just ℝ*. (Contributed by Jim Kingdon, 27-Feb-2020.) |
| Ref | Expression |
|---|---|
| gt0ap0d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| gt0ap0d.2 | ⊢ (𝜑 → 0 < 𝐴) |
| Ref | Expression |
|---|---|
| gt0ap0d | ⊢ (𝜑 → 𝐴 # 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gt0ap0d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | gt0ap0d.2 | . 2 ⊢ (𝜑 → 0 < 𝐴) | |
| 3 | gt0ap0 8670 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 # 0) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → 𝐴 # 0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 class class class wbr 4034 ℝcr 7895 0cc0 7896 < clt 8078 # cap 8625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 |
| This theorem is referenced by: prodgt0gt0 8895 prodgt0 8896 ltdiv1 8912 ltmuldiv 8918 ledivmul 8921 lt2mul2div 8923 lemuldiv 8925 ltrec 8927 lerec 8928 ltrec1 8932 lerec2 8933 ledivdiv 8934 lediv2 8935 ltdiv23 8936 lediv23 8937 lediv12a 8938 recp1lt1 8943 ledivp1 8947 nnap0 9036 rpap0 9762 modq0 10438 mulqmod0 10439 negqmod0 10440 modqlt 10442 modqdiffl 10444 modqid0 10459 modqcyc 10468 modqmuladdnn0 10477 q2txmodxeq0 10493 modqdi 10501 ltexp2a 10700 leexp2a 10701 expnbnd 10772 expcanlem 10824 expcan 10825 resqrexlemover 11192 resqrexlemcalc1 11196 resqrexlemcalc2 11197 ltabs 11269 divcnv 11679 expcnvre 11685 georeclim 11695 geoisumr 11700 cvgratnnlembern 11705 cvgratnnlemfm 11711 cvgratz 11714 cnopnap 14931 reeff1oleme 15092 tangtx 15158 mersenne 15317 perfectlem2 15320 lgsquadlem1 15402 lgsquadlem2 15403 trirec0 15775 ltlenmkv 15801 |
| Copyright terms: Public domain | W3C validator |