![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltmnqi | GIF version |
Description: Ordering property of multiplication for positive fractions. One direction of ltmnqg 7400. (Contributed by Jim Kingdon, 9-Dec-2019.) |
Ref | Expression |
---|---|
ltmnqi | โข ((๐ด <Q ๐ต โง ๐ถ โ Q) โ (๐ถ ยทQ ๐ด) <Q (๐ถ ยทQ ๐ต)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . 2 โข ((๐ด <Q ๐ต โง ๐ถ โ Q) โ ๐ด <Q ๐ต) | |
2 | ltrelnq 7364 | . . . 4 โข <Q โ (Q ร Q) | |
3 | 2 | brel 4679 | . . 3 โข (๐ด <Q ๐ต โ (๐ด โ Q โง ๐ต โ Q)) |
4 | ltmnqg 7400 | . . . 4 โข ((๐ด โ Q โง ๐ต โ Q โง ๐ถ โ Q) โ (๐ด <Q ๐ต โ (๐ถ ยทQ ๐ด) <Q (๐ถ ยทQ ๐ต))) | |
5 | 4 | 3expa 1203 | . . 3 โข (((๐ด โ Q โง ๐ต โ Q) โง ๐ถ โ Q) โ (๐ด <Q ๐ต โ (๐ถ ยทQ ๐ด) <Q (๐ถ ยทQ ๐ต))) |
6 | 3, 5 | sylan 283 | . 2 โข ((๐ด <Q ๐ต โง ๐ถ โ Q) โ (๐ด <Q ๐ต โ (๐ถ ยทQ ๐ด) <Q (๐ถ ยทQ ๐ต))) |
7 | 1, 6 | mpbid 147 | 1 โข ((๐ด <Q ๐ต โง ๐ถ โ Q) โ (๐ถ ยทQ ๐ด) <Q (๐ถ ยทQ ๐ต)) |
Colors of variables: wff set class |
Syntax hints: โ wi 4 โง wa 104 โ wb 105 โ wcel 2148 class class class wbr 4004 (class class class)co 5875 Qcnq 7279 ยทQ cmq 7282 <Q cltq 7284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4119 ax-sep 4122 ax-nul 4130 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-iinf 4588 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-nul 3424 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-iun 3889 df-br 4005 df-opab 4066 df-mpt 4067 df-tr 4103 df-eprel 4290 df-id 4294 df-iord 4367 df-on 4369 df-suc 4372 df-iom 4591 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-f1 5222 df-fo 5223 df-f1o 5224 df-fv 5225 df-ov 5878 df-oprab 5879 df-mpo 5880 df-1st 6141 df-2nd 6142 df-recs 6306 df-irdg 6371 df-oadd 6421 df-omul 6422 df-er 6535 df-ec 6537 df-qs 6541 df-ni 7303 df-mi 7305 df-lti 7306 df-mpq 7344 df-enq 7346 df-nqqs 7347 df-mqqs 7349 df-ltnqqs 7352 |
This theorem is referenced by: prmuloclemcalc 7564 recexprlemss1l 7634 recexprlemss1u 7635 |
Copyright terms: Public domain | W3C validator |