ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltmnqi GIF version

Theorem ltmnqi 7463
Description: Ordering property of multiplication for positive fractions. One direction of ltmnqg 7461. (Contributed by Jim Kingdon, 9-Dec-2019.)
Assertion
Ref Expression
ltmnqi ((𝐴 <Q 𝐵𝐶Q) → (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵))

Proof of Theorem ltmnqi
StepHypRef Expression
1 simpl 109 . 2 ((𝐴 <Q 𝐵𝐶Q) → 𝐴 <Q 𝐵)
2 ltrelnq 7425 . . . 4 <Q ⊆ (Q × Q)
32brel 4711 . . 3 (𝐴 <Q 𝐵 → (𝐴Q𝐵Q))
4 ltmnqg 7461 . . . 4 ((𝐴Q𝐵Q𝐶Q) → (𝐴 <Q 𝐵 ↔ (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵)))
543expa 1205 . . 3 (((𝐴Q𝐵Q) ∧ 𝐶Q) → (𝐴 <Q 𝐵 ↔ (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵)))
63, 5sylan 283 . 2 ((𝐴 <Q 𝐵𝐶Q) → (𝐴 <Q 𝐵 ↔ (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵)))
71, 6mpbid 147 1 ((𝐴 <Q 𝐵𝐶Q) → (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2164   class class class wbr 4029  (class class class)co 5918  Qcnq 7340   ·Q cmq 7343   <Q cltq 7345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-mi 7366  df-lti 7367  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-mqqs 7410  df-ltnqqs 7413
This theorem is referenced by:  prmuloclemcalc  7625  recexprlemss1l  7695  recexprlemss1u  7696
  Copyright terms: Public domain W3C validator