![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltanqi | GIF version |
Description: Ordering property of addition for positive fractions. One direction of ltanqg 7424. (Contributed by Jim Kingdon, 9-Dec-2019.) |
Ref | Expression |
---|---|
ltanqi | ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 ∈ Q) → (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . 2 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 ∈ Q) → 𝐴 <Q 𝐵) | |
2 | ltrelnq 7389 | . . . 4 ⊢ <Q ⊆ (Q × Q) | |
3 | 2 | brel 4693 | . . 3 ⊢ (𝐴 <Q 𝐵 → (𝐴 ∈ Q ∧ 𝐵 ∈ Q)) |
4 | ltanqg 7424 | . . . 4 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐶 ∈ Q) → (𝐴 <Q 𝐵 ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵))) | |
5 | 4 | 3expa 1205 | . . 3 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ 𝐶 ∈ Q) → (𝐴 <Q 𝐵 ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵))) |
6 | 3, 5 | sylan 283 | . 2 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 ∈ Q) → (𝐴 <Q 𝐵 ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵))) |
7 | 1, 6 | mpbid 147 | 1 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 ∈ Q) → (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2160 class class class wbr 4018 (class class class)co 5892 Qcnq 7304 +Q cplq 7306 <Q cltq 7309 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-iinf 4602 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-eprel 4304 df-id 4308 df-iord 4381 df-on 4383 df-suc 4386 df-iom 4605 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5234 df-fn 5235 df-f 5236 df-f1 5237 df-fo 5238 df-f1o 5239 df-fv 5240 df-ov 5895 df-oprab 5896 df-mpo 5897 df-1st 6160 df-2nd 6161 df-recs 6325 df-irdg 6390 df-oadd 6440 df-omul 6441 df-er 6554 df-ec 6556 df-qs 6560 df-ni 7328 df-pli 7329 df-mi 7330 df-lti 7331 df-plpq 7368 df-enq 7371 df-nqqs 7372 df-plqqs 7373 df-ltnqqs 7377 |
This theorem is referenced by: ltbtwnnqq 7439 prmuloclemcalc 7589 ltexprlemlol 7626 ltexprlemupu 7628 addcanprlemu 7639 cauappcvgprlemloc 7676 cauappcvgprlem2 7684 caucvgprlemloc 7699 caucvgprlem1 7703 caucvgprlem2 7704 caucvgprprlemloccalc 7708 |
Copyright terms: Public domain | W3C validator |