![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltanqi | GIF version |
Description: Ordering property of addition for positive fractions. One direction of ltanqg 7109. (Contributed by Jim Kingdon, 9-Dec-2019.) |
Ref | Expression |
---|---|
ltanqi | ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 ∈ Q) → (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . 2 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 ∈ Q) → 𝐴 <Q 𝐵) | |
2 | ltrelnq 7074 | . . . 4 ⊢ <Q ⊆ (Q × Q) | |
3 | 2 | brel 4529 | . . 3 ⊢ (𝐴 <Q 𝐵 → (𝐴 ∈ Q ∧ 𝐵 ∈ Q)) |
4 | ltanqg 7109 | . . . 4 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐶 ∈ Q) → (𝐴 <Q 𝐵 ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵))) | |
5 | 4 | 3expa 1149 | . . 3 ⊢ (((𝐴 ∈ Q ∧ 𝐵 ∈ Q) ∧ 𝐶 ∈ Q) → (𝐴 <Q 𝐵 ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵))) |
6 | 3, 5 | sylan 279 | . 2 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 ∈ Q) → (𝐴 <Q 𝐵 ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵))) |
7 | 1, 6 | mpbid 146 | 1 ⊢ ((𝐴 <Q 𝐵 ∧ 𝐶 ∈ Q) → (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 1448 class class class wbr 3875 (class class class)co 5706 Qcnq 6989 +Q cplq 6991 <Q cltq 6994 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-coll 3983 ax-sep 3986 ax-nul 3994 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-iinf 4440 |
This theorem depends on definitions: df-bi 116 df-dc 787 df-3or 931 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-ral 2380 df-rex 2381 df-reu 2382 df-rab 2384 df-v 2643 df-sbc 2863 df-csb 2956 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-nul 3311 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-int 3719 df-iun 3762 df-br 3876 df-opab 3930 df-mpt 3931 df-tr 3967 df-eprel 4149 df-id 4153 df-iord 4226 df-on 4228 df-suc 4231 df-iom 4443 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-res 4489 df-ima 4490 df-iota 5024 df-fun 5061 df-fn 5062 df-f 5063 df-f1 5064 df-fo 5065 df-f1o 5066 df-fv 5067 df-ov 5709 df-oprab 5710 df-mpo 5711 df-1st 5969 df-2nd 5970 df-recs 6132 df-irdg 6197 df-oadd 6247 df-omul 6248 df-er 6359 df-ec 6361 df-qs 6365 df-ni 7013 df-pli 7014 df-mi 7015 df-lti 7016 df-plpq 7053 df-enq 7056 df-nqqs 7057 df-plqqs 7058 df-ltnqqs 7062 |
This theorem is referenced by: ltbtwnnqq 7124 prmuloclemcalc 7274 ltexprlemlol 7311 ltexprlemupu 7313 addcanprlemu 7324 cauappcvgprlemloc 7361 cauappcvgprlem2 7369 caucvgprlemloc 7384 caucvgprlem1 7388 caucvgprlem2 7389 caucvgprprlemloccalc 7393 |
Copyright terms: Public domain | W3C validator |