![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opprnzrbg | GIF version |
Description: The opposite of a nonzero ring is nonzero, bidirectional form of opprnzr 13666. (Contributed by SN, 20-Jun-2025.) |
Ref | Expression |
---|---|
opprnzr.1 | ⊢ 𝑂 = (oppr‘𝑅) |
Ref | Expression |
---|---|
opprnzrbg | ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ NzRing ↔ 𝑂 ∈ NzRing)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprnzr.1 | . . . 4 ⊢ 𝑂 = (oppr‘𝑅) | |
2 | 1 | opprringbg 13560 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Ring ↔ 𝑂 ∈ Ring)) |
3 | eqid 2193 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
4 | 1, 3 | oppr1g 13562 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (1r‘𝑅) = (1r‘𝑂)) |
5 | eqid 2193 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
6 | 1, 5 | oppr0g 13561 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (0g‘𝑅) = (0g‘𝑂)) |
7 | 4, 6 | neeq12d 2384 | . . 3 ⊢ (𝑅 ∈ 𝑉 → ((1r‘𝑅) ≠ (0g‘𝑅) ↔ (1r‘𝑂) ≠ (0g‘𝑂))) |
8 | 2, 7 | anbi12d 473 | . 2 ⊢ (𝑅 ∈ 𝑉 → ((𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅)) ↔ (𝑂 ∈ Ring ∧ (1r‘𝑂) ≠ (0g‘𝑂)))) |
9 | 3, 5 | isnzr 13661 | . 2 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅))) |
10 | eqid 2193 | . . 3 ⊢ (1r‘𝑂) = (1r‘𝑂) | |
11 | eqid 2193 | . . 3 ⊢ (0g‘𝑂) = (0g‘𝑂) | |
12 | 10, 11 | isnzr 13661 | . 2 ⊢ (𝑂 ∈ NzRing ↔ (𝑂 ∈ Ring ∧ (1r‘𝑂) ≠ (0g‘𝑂))) |
13 | 8, 9, 12 | 3bitr4g 223 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ NzRing ↔ 𝑂 ∈ NzRing)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 ‘cfv 5246 0gc0g 12857 1rcur 13439 Ringcrg 13476 opprcoppr 13547 NzRingcnzr 13659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4462 ax-setind 4565 ax-cnex 7953 ax-resscn 7954 ax-1cn 7955 ax-1re 7956 ax-icn 7957 ax-addcl 7958 ax-addrcl 7959 ax-mulcl 7960 ax-addcom 7962 ax-addass 7964 ax-i2m1 7967 ax-0lt1 7968 ax-0id 7970 ax-rnegex 7971 ax-pre-ltirr 7974 ax-pre-lttrn 7976 ax-pre-ltadd 7978 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4322 df-xp 4661 df-rel 4662 df-cnv 4663 df-co 4664 df-dm 4665 df-rn 4666 df-res 4667 df-ima 4668 df-iota 5207 df-fun 5248 df-fn 5249 df-fv 5254 df-riota 5865 df-ov 5913 df-oprab 5914 df-mpo 5915 df-tpos 6289 df-pnf 8046 df-mnf 8047 df-ltxr 8049 df-inn 8973 df-2 9031 df-3 9032 df-ndx 12611 df-slot 12612 df-base 12614 df-sets 12615 df-plusg 12698 df-mulr 12699 df-0g 12859 df-mgm 12929 df-sgrp 12975 df-mnd 12988 df-grp 13065 df-mgp 13401 df-ur 13440 df-ring 13478 df-oppr 13548 df-nzr 13660 |
This theorem is referenced by: opprnzr 13666 opprdomnbg 13754 |
Copyright terms: Public domain | W3C validator |