ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rng2idlsubgsubrng GIF version

Theorem rng2idlsubgsubrng 14449
Description: A two-sided ideal of a non-unital ring which is a subgroup of the ring is a subring of the ring. (Contributed by AV, 11-Mar-2025.)
Hypotheses
Ref Expression
rng2idlsubgsubrng.r (𝜑𝑅 ∈ Rng)
rng2idlsubgsubrng.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rng2idlsubgsubrng.u (𝜑𝐼 ∈ (SubGrp‘𝑅))
Assertion
Ref Expression
rng2idlsubgsubrng (𝜑𝐼 ∈ (SubRng‘𝑅))

Proof of Theorem rng2idlsubgsubrng
StepHypRef Expression
1 rng2idlsubgsubrng.r . 2 (𝜑𝑅 ∈ Rng)
2 rng2idlsubgsubrng.i . 2 (𝜑𝐼 ∈ (2Ideal‘𝑅))
3 eqid 2209 . . . . . 6 (LIdeal‘𝑅) = (LIdeal‘𝑅)
4 eqid 2209 . . . . . 6 (oppr𝑅) = (oppr𝑅)
5 eqid 2209 . . . . . 6 (LIdeal‘(oppr𝑅)) = (LIdeal‘(oppr𝑅))
6 eqid 2209 . . . . . 6 (2Ideal‘𝑅) = (2Ideal‘𝑅)
73, 4, 5, 62idlelb 14434 . . . . 5 (𝐼 ∈ (2Ideal‘𝑅) ↔ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ∈ (LIdeal‘(oppr𝑅))))
87simplbi 274 . . . 4 (𝐼 ∈ (2Ideal‘𝑅) → 𝐼 ∈ (LIdeal‘𝑅))
92, 8syl 14 . . 3 (𝜑𝐼 ∈ (LIdeal‘𝑅))
10 rng2idlsubgsubrng.u . . 3 (𝜑𝐼 ∈ (SubGrp‘𝑅))
11 eqid 2209 . . . 4 (𝑅s 𝐼) = (𝑅s 𝐼)
123, 11rnglidlrng 14427 . . 3 ((𝑅 ∈ Rng ∧ 𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝑅s 𝐼) ∈ Rng)
131, 9, 10, 12syl3anc 1252 . 2 (𝜑 → (𝑅s 𝐼) ∈ Rng)
141, 2, 13rng2idlsubrng 14446 1 (𝜑𝐼 ∈ (SubRng‘𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2180  cfv 5294  (class class class)co 5974  s cress 12999  SubGrpcsubg 13670  Rngcrng 13861  opprcoppr 13996  SubRngcsubrng 14126  LIdealclidl 14396  2Idealc2idl 14428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-pre-ltirr 8079  ax-pre-lttrn 8081  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-pnf 8151  df-mnf 8152  df-ltxr 8154  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-iress 13006  df-plusg 13089  df-mulr 13090  df-sca 13092  df-vsca 13093  df-ip 13094  df-0g 13257  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-grp 13502  df-subg 13673  df-cmn 13789  df-abl 13790  df-mgp 13850  df-rng 13862  df-subrng 14127  df-lssm 14282  df-sra 14364  df-rgmod 14365  df-lidl 14398  df-2idl 14429
This theorem is referenced by:  rng2idlsubgnsg  14450  rng2idlsubg0  14451
  Copyright terms: Public domain W3C validator