![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > geoserap | GIF version |
Description: The value of the finite geometric series 1 + 𝐴↑1 + 𝐴↑2 +... + 𝐴↑(𝑁 − 1). This is Metamath 100 proof #66. (Contributed by NM, 12-May-2006.) (Revised by Jim Kingdon, 24-Oct-2022.) |
Ref | Expression |
---|---|
geoser.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
geoser.2 | ⊢ (𝜑 → 𝐴 # 1) |
geoser.3 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
geoserap | ⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘) = ((1 − (𝐴↑𝑁)) / (1 − 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | geoser.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | geoser.2 | . . 3 ⊢ (𝜑 → 𝐴 # 1) | |
3 | 0nn0 9261 | . . . 4 ⊢ 0 ∈ ℕ0 | |
4 | 3 | a1i 9 | . . 3 ⊢ (𝜑 → 0 ∈ ℕ0) |
5 | geoser.3 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
6 | nn0uz 9633 | . . . 4 ⊢ ℕ0 = (ℤ≥‘0) | |
7 | 5, 6 | eleqtrdi 2289 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘0)) |
8 | 1, 2, 4, 7 | geosergap 11655 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (0..^𝑁)(𝐴↑𝑘) = (((𝐴↑0) − (𝐴↑𝑁)) / (1 − 𝐴))) |
9 | 5 | nn0zd 9443 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
10 | fzoval 10220 | . . . 4 ⊢ (𝑁 ∈ ℤ → (0..^𝑁) = (0...(𝑁 − 1))) | |
11 | 9, 10 | syl 14 | . . 3 ⊢ (𝜑 → (0..^𝑁) = (0...(𝑁 − 1))) |
12 | 11 | sumeq1d 11515 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (0..^𝑁)(𝐴↑𝑘) = Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘)) |
13 | 1 | exp0d 10744 | . . . 4 ⊢ (𝜑 → (𝐴↑0) = 1) |
14 | 13 | oveq1d 5937 | . . 3 ⊢ (𝜑 → ((𝐴↑0) − (𝐴↑𝑁)) = (1 − (𝐴↑𝑁))) |
15 | 14 | oveq1d 5937 | . 2 ⊢ (𝜑 → (((𝐴↑0) − (𝐴↑𝑁)) / (1 − 𝐴)) = ((1 − (𝐴↑𝑁)) / (1 − 𝐴))) |
16 | 8, 12, 15 | 3eqtr3d 2237 | 1 ⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))(𝐴↑𝑘) = ((1 − (𝐴↑𝑁)) / (1 − 𝐴))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 class class class wbr 4033 ‘cfv 5258 (class class class)co 5922 ℂcc 7875 0cc0 7877 1c1 7878 − cmin 8195 # cap 8605 / cdiv 8696 ℕ0cn0 9246 ℤcz 9323 ℤ≥cuz 9598 ...cfz 10080 ..^cfzo 10214 ↑cexp 10615 Σcsu 11502 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7968 ax-resscn 7969 ax-1cn 7970 ax-1re 7971 ax-icn 7972 ax-addcl 7973 ax-addrcl 7974 ax-mulcl 7975 ax-mulrcl 7976 ax-addcom 7977 ax-mulcom 7978 ax-addass 7979 ax-mulass 7980 ax-distr 7981 ax-i2m1 7982 ax-0lt1 7983 ax-1rid 7984 ax-0id 7985 ax-rnegex 7986 ax-precex 7987 ax-cnre 7988 ax-pre-ltirr 7989 ax-pre-ltwlin 7990 ax-pre-lttrn 7991 ax-pre-apti 7992 ax-pre-ltadd 7993 ax-pre-mulgt0 7994 ax-pre-mulext 7995 ax-arch 7996 ax-caucvg 7997 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-oadd 6478 df-er 6592 df-en 6800 df-dom 6801 df-fin 6802 df-pnf 8061 df-mnf 8062 df-xr 8063 df-ltxr 8064 df-le 8065 df-sub 8197 df-neg 8198 df-reap 8599 df-ap 8606 df-div 8697 df-inn 8988 df-2 9046 df-3 9047 df-4 9048 df-n0 9247 df-z 9324 df-uz 9599 df-q 9691 df-rp 9726 df-fz 10081 df-fzo 10215 df-seqfrec 10525 df-exp 10616 df-ihash 10853 df-cj 10992 df-re 10993 df-im 10994 df-rsqrt 11148 df-abs 11149 df-clim 11428 df-sumdc 11503 |
This theorem is referenced by: pwm1geoserap1 11657 geolim 11660 geolim2 11661 geo2sum 11663 geo2sum2 11664 1sgm2ppw 15203 |
Copyright terms: Public domain | W3C validator |