Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  telfsum2 GIF version

Theorem telfsum2 11297
 Description: Sum of a telescoping series. (Contributed by Mario Carneiro, 15-Jun-2014.) (Revised by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
telfsum.1 (𝑘 = 𝑗𝐴 = 𝐵)
telfsum.2 (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
telfsum.3 (𝑘 = 𝑀𝐴 = 𝐷)
telfsum.4 (𝑘 = (𝑁 + 1) → 𝐴 = 𝐸)
telfsum.5 (𝜑𝑁 ∈ ℤ)
telfsum.6 (𝜑 → (𝑁 + 1) ∈ (ℤ𝑀))
telfsum.7 ((𝜑𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
telfsum2 (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)(𝐶𝐵) = (𝐸𝐷))
Distinct variable groups:   𝐴,𝑗   𝐵,𝑘   𝐶,𝑘   𝑗,𝑘,𝑀   𝑗,𝑁,𝑘   𝜑,𝑗,𝑘   𝐷,𝑘   𝑘,𝐸
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑗)   𝐶(𝑗)   𝐷(𝑗)   𝐸(𝑗)

Proof of Theorem telfsum2
StepHypRef Expression
1 telfsum.5 . . . 4 (𝜑𝑁 ∈ ℤ)
2 fzval3 10039 . . . 4 (𝑁 ∈ ℤ → (𝑀...𝑁) = (𝑀..^(𝑁 + 1)))
31, 2syl 14 . . 3 (𝜑 → (𝑀...𝑁) = (𝑀..^(𝑁 + 1)))
43sumeq1d 11194 . 2 (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)(𝐶𝐵) = Σ𝑗 ∈ (𝑀..^(𝑁 + 1))(𝐶𝐵))
5 telfsum.1 . . 3 (𝑘 = 𝑗𝐴 = 𝐵)
6 telfsum.2 . . 3 (𝑘 = (𝑗 + 1) → 𝐴 = 𝐶)
7 telfsum.3 . . 3 (𝑘 = 𝑀𝐴 = 𝐷)
8 telfsum.4 . . 3 (𝑘 = (𝑁 + 1) → 𝐴 = 𝐸)
9 telfsum.6 . . 3 (𝜑 → (𝑁 + 1) ∈ (ℤ𝑀))
10 telfsum.7 . . 3 ((𝜑𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ ℂ)
115, 6, 7, 8, 9, 10telfsumo2 11295 . 2 (𝜑 → Σ𝑗 ∈ (𝑀..^(𝑁 + 1))(𝐶𝐵) = (𝐸𝐷))
124, 11eqtrd 2173 1 (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)(𝐶𝐵) = (𝐸𝐷))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   = wceq 1332   ∈ wcel 1481  ‘cfv 5134  (class class class)co 5785  ℂcc 7669  1c1 7672   + caddc 7674   − cmin 7984  ℤcz 9105  ℤ≥cuz 9377  ...cfz 9848  ..^cfzo 9977  Σcsu 11181 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4052  ax-sep 4055  ax-nul 4063  ax-pow 4107  ax-pr 4141  ax-un 4365  ax-setind 4462  ax-iinf 4512  ax-cnex 7762  ax-resscn 7763  ax-1cn 7764  ax-1re 7765  ax-icn 7766  ax-addcl 7767  ax-addrcl 7768  ax-mulcl 7769  ax-mulrcl 7770  ax-addcom 7771  ax-mulcom 7772  ax-addass 7773  ax-mulass 7774  ax-distr 7775  ax-i2m1 7776  ax-0lt1 7777  ax-1rid 7778  ax-0id 7779  ax-rnegex 7780  ax-precex 7781  ax-cnre 7782  ax-pre-ltirr 7783  ax-pre-ltwlin 7784  ax-pre-lttrn 7785  ax-pre-apti 7786  ax-pre-ltadd 7787  ax-pre-mulgt0 7788  ax-pre-mulext 7789  ax-arch 7790  ax-caucvg 7791 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2692  df-sbc 2915  df-csb 3009  df-dif 3079  df-un 3081  df-in 3083  df-ss 3090  df-nul 3370  df-if 3481  df-pw 3518  df-sn 3539  df-pr 3540  df-op 3542  df-uni 3746  df-int 3781  df-iun 3824  df-br 3939  df-opab 3999  df-mpt 4000  df-tr 4036  df-id 4225  df-po 4228  df-iso 4229  df-iord 4298  df-on 4300  df-ilim 4301  df-suc 4303  df-iom 4515  df-xp 4556  df-rel 4557  df-cnv 4558  df-co 4559  df-dm 4560  df-rn 4561  df-res 4562  df-ima 4563  df-iota 5099  df-fun 5136  df-fn 5137  df-f 5138  df-f1 5139  df-fo 5140  df-f1o 5141  df-fv 5142  df-isom 5143  df-riota 5741  df-ov 5788  df-oprab 5789  df-mpo 5790  df-1st 6049  df-2nd 6050  df-recs 6213  df-irdg 6278  df-frec 6299  df-1o 6324  df-oadd 6328  df-er 6440  df-en 6646  df-dom 6647  df-fin 6648  df-pnf 7853  df-mnf 7854  df-xr 7855  df-ltxr 7856  df-le 7857  df-sub 7986  df-neg 7987  df-reap 8388  df-ap 8395  df-div 8484  df-inn 8772  df-2 8830  df-3 8831  df-4 8832  df-n0 9029  df-z 9106  df-uz 9378  df-q 9466  df-rp 9498  df-fz 9849  df-fzo 9978  df-seqfrec 10277  df-exp 10351  df-ihash 10581  df-cj 10673  df-re 10674  df-im 10675  df-rsqrt 10829  df-abs 10830  df-clim 11107  df-sumdc 11182 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator