ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  upgrunop GIF version

Theorem upgrunop 15768
Description: The union of two pseudographs (with the same vertex set): If 𝑉, 𝐸 and 𝑉, 𝐹 are pseudographs, then 𝑉, 𝐸𝐹 is a pseudograph (the vertex set stays the same, but the edges from both graphs are kept). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 12-Oct-2020.) (Revised by AV, 24-Oct-2021.)
Hypotheses
Ref Expression
upgrun.g (𝜑𝐺 ∈ UPGraph)
upgrun.h (𝜑𝐻 ∈ UPGraph)
upgrun.e 𝐸 = (iEdg‘𝐺)
upgrun.f 𝐹 = (iEdg‘𝐻)
upgrun.vg 𝑉 = (Vtx‘𝐺)
upgrun.vh (𝜑 → (Vtx‘𝐻) = 𝑉)
upgrun.i (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
Assertion
Ref Expression
upgrunop (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ UPGraph)

Proof of Theorem upgrunop
StepHypRef Expression
1 upgrun.g . 2 (𝜑𝐺 ∈ UPGraph)
2 upgrun.h . 2 (𝜑𝐻 ∈ UPGraph)
3 upgrun.e . 2 𝐸 = (iEdg‘𝐺)
4 upgrun.f . 2 𝐹 = (iEdg‘𝐻)
5 upgrun.vg . 2 𝑉 = (Vtx‘𝐺)
6 upgrun.vh . 2 (𝜑 → (Vtx‘𝐻) = 𝑉)
7 upgrun.i . 2 (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
8 vtxex 15667 . . . . 5 (𝐺 ∈ UPGraph → (Vtx‘𝐺) ∈ V)
91, 8syl 14 . . . 4 (𝜑 → (Vtx‘𝐺) ∈ V)
105, 9eqeltrid 2293 . . 3 (𝜑𝑉 ∈ V)
11 iedgex 15668 . . . . . 6 (𝐺 ∈ UPGraph → (iEdg‘𝐺) ∈ V)
121, 11syl 14 . . . . 5 (𝜑 → (iEdg‘𝐺) ∈ V)
133, 12eqeltrid 2293 . . . 4 (𝜑𝐸 ∈ V)
14 iedgex 15668 . . . . . 6 (𝐻 ∈ UPGraph → (iEdg‘𝐻) ∈ V)
152, 14syl 14 . . . . 5 (𝜑 → (iEdg‘𝐻) ∈ V)
164, 15eqeltrid 2293 . . . 4 (𝜑𝐹 ∈ V)
17 unexg 4495 . . . 4 ((𝐸 ∈ V ∧ 𝐹 ∈ V) → (𝐸𝐹) ∈ V)
1813, 16, 17syl2anc 411 . . 3 (𝜑 → (𝐸𝐹) ∈ V)
19 opexg 4277 . . 3 ((𝑉 ∈ V ∧ (𝐸𝐹) ∈ V) → ⟨𝑉, (𝐸𝐹)⟩ ∈ V)
2010, 18, 19syl2anc 411 . 2 (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ V)
21 opvtxfv 15671 . . 3 ((𝑉 ∈ V ∧ (𝐸𝐹) ∈ V) → (Vtx‘⟨𝑉, (𝐸𝐹)⟩) = 𝑉)
2210, 18, 21syl2anc 411 . 2 (𝜑 → (Vtx‘⟨𝑉, (𝐸𝐹)⟩) = 𝑉)
23 opiedgfv 15674 . . 3 ((𝑉 ∈ V ∧ (𝐸𝐹) ∈ V) → (iEdg‘⟨𝑉, (𝐸𝐹)⟩) = (𝐸𝐹))
2410, 18, 23syl2anc 411 . 2 (𝜑 → (iEdg‘⟨𝑉, (𝐸𝐹)⟩) = (𝐸𝐹))
251, 2, 3, 4, 5, 6, 7, 20, 22, 24upgrun 15767 1 (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ UPGraph)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  Vcvv 2773  cun 3166  cin 3167  c0 3462  cop 3638  dom cdm 4680  cfv 5277  Vtxcvtx 15661  iEdgciedg 15662  UPGraphcupgr 15737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-cnre 8049
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-if 3574  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-fo 5283  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-sub 8258  df-inn 9050  df-2 9108  df-3 9109  df-4 9110  df-5 9111  df-6 9112  df-7 9113  df-8 9114  df-9 9115  df-n0 9309  df-dec 9518  df-ndx 12885  df-slot 12886  df-base 12888  df-edgf 15654  df-vtx 15663  df-iedg 15664  df-upgren 15739
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator