| Step | Hyp | Ref
| Expression |
| 1 | | df-wlks 16025 |
. 2
⊢ Walks =
(𝑔 ∈ V ↦
{〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom
(iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈
(0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘))))}) |
| 2 | | fveq2 5626 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺)) |
| 3 | | wksfval.i |
. . . . . . . 8
⊢ 𝐼 = (iEdg‘𝐺) |
| 4 | 2, 3 | eqtr4di 2280 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (iEdg‘𝑔) = 𝐼) |
| 5 | 4 | dmeqd 4924 |
. . . . . 6
⊢ (𝑔 = 𝐺 → dom (iEdg‘𝑔) = dom 𝐼) |
| 6 | | wrdeq 11088 |
. . . . . 6
⊢ (dom
(iEdg‘𝑔) = dom 𝐼 → Word dom
(iEdg‘𝑔) = Word dom
𝐼) |
| 7 | 5, 6 | syl 14 |
. . . . 5
⊢ (𝑔 = 𝐺 → Word dom (iEdg‘𝑔) = Word dom 𝐼) |
| 8 | 7 | eleq2d 2299 |
. . . 4
⊢ (𝑔 = 𝐺 → (𝑓 ∈ Word dom (iEdg‘𝑔) ↔ 𝑓 ∈ Word dom 𝐼)) |
| 9 | | fveq2 5626 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺)) |
| 10 | | wksfval.v |
. . . . . 6
⊢ 𝑉 = (Vtx‘𝐺) |
| 11 | 9, 10 | eqtr4di 2280 |
. . . . 5
⊢ (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉) |
| 12 | 11 | feq3d 5461 |
. . . 4
⊢ (𝑔 = 𝐺 → (𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ↔ 𝑝:(0...(♯‘𝑓))⟶𝑉)) |
| 13 | 4 | fveq1d 5628 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → ((iEdg‘𝑔)‘(𝑓‘𝑘)) = (𝐼‘(𝑓‘𝑘))) |
| 14 | 13 | eqeq1d 2238 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘)} ↔ (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)})) |
| 15 | 13 | sseq2d 3254 |
. . . . . 6
⊢ (𝑔 = 𝐺 → ({(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘)) ↔ {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘)))) |
| 16 | 14, 15 | ifpbi23d 999 |
. . . . 5
⊢ (𝑔 = 𝐺 → (if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘))) ↔ if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘))))) |
| 17 | 16 | ralbidv 2530 |
. . . 4
⊢ (𝑔 = 𝐺 → (∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘))) ↔ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘))))) |
| 18 | 8, 12, 17 | 3anbi123d 1346 |
. . 3
⊢ (𝑔 = 𝐺 → ((𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘)))) ↔ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘)))))) |
| 19 | 18 | opabbidv 4149 |
. 2
⊢ (𝑔 = 𝐺 → {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘))))} = {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘))))}) |
| 20 | | elex 2811 |
. 2
⊢ (𝐺 ∈ 𝑊 → 𝐺 ∈ V) |
| 21 | | 3anass 1006 |
. . . 4
⊢ ((𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘)))) ↔ (𝑓 ∈ Word dom 𝐼 ∧ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘)))))) |
| 22 | 21 | opabbii 4150 |
. . 3
⊢
{〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘))))} = {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom 𝐼 ∧ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘)))))} |
| 23 | | iedgex 15814 |
. . . . . . 7
⊢ (𝐺 ∈ 𝑊 → (iEdg‘𝐺) ∈ V) |
| 24 | 3, 23 | eqeltrid 2316 |
. . . . . 6
⊢ (𝐺 ∈ 𝑊 → 𝐼 ∈ V) |
| 25 | 24 | dmexd 4989 |
. . . . 5
⊢ (𝐺 ∈ 𝑊 → dom 𝐼 ∈ V) |
| 26 | | wrdexg 11077 |
. . . . 5
⊢ (dom
𝐼 ∈ V → Word dom
𝐼 ∈
V) |
| 27 | 25, 26 | syl 14 |
. . . 4
⊢ (𝐺 ∈ 𝑊 → Word dom 𝐼 ∈ V) |
| 28 | | 0zd 9454 |
. . . . . . 7
⊢ (𝑓 ∈ Word dom 𝐼 → 0 ∈
ℤ) |
| 29 | | lencl 11070 |
. . . . . . . 8
⊢ (𝑓 ∈ Word dom 𝐼 → (♯‘𝑓) ∈
ℕ0) |
| 30 | 29 | nn0zd 9563 |
. . . . . . 7
⊢ (𝑓 ∈ Word dom 𝐼 → (♯‘𝑓) ∈
ℤ) |
| 31 | 28, 30 | fzfigd 10648 |
. . . . . 6
⊢ (𝑓 ∈ Word dom 𝐼 →
(0...(♯‘𝑓))
∈ Fin) |
| 32 | | vtxex 15813 |
. . . . . . 7
⊢ (𝐺 ∈ 𝑊 → (Vtx‘𝐺) ∈ V) |
| 33 | 10, 32 | eqeltrid 2316 |
. . . . . 6
⊢ (𝐺 ∈ 𝑊 → 𝑉 ∈ V) |
| 34 | | mapex 6799 |
. . . . . 6
⊢
(((0...(♯‘𝑓)) ∈ Fin ∧ 𝑉 ∈ V) → {𝑝 ∣ 𝑝:(0...(♯‘𝑓))⟶𝑉} ∈ V) |
| 35 | 31, 33, 34 | syl2anr 290 |
. . . . 5
⊢ ((𝐺 ∈ 𝑊 ∧ 𝑓 ∈ Word dom 𝐼) → {𝑝 ∣ 𝑝:(0...(♯‘𝑓))⟶𝑉} ∈ V) |
| 36 | | simpl 109 |
. . . . . . 7
⊢ ((𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘)))) → 𝑝:(0...(♯‘𝑓))⟶𝑉) |
| 37 | 36 | ss2abi 3296 |
. . . . . 6
⊢ {𝑝 ∣ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘))))} ⊆ {𝑝 ∣ 𝑝:(0...(♯‘𝑓))⟶𝑉} |
| 38 | 37 | a1i 9 |
. . . . 5
⊢ ((𝐺 ∈ 𝑊 ∧ 𝑓 ∈ Word dom 𝐼) → {𝑝 ∣ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘))))} ⊆ {𝑝 ∣ 𝑝:(0...(♯‘𝑓))⟶𝑉}) |
| 39 | 35, 38 | ssexd 4223 |
. . . 4
⊢ ((𝐺 ∈ 𝑊 ∧ 𝑓 ∈ Word dom 𝐼) → {𝑝 ∣ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘))))} ∈ V) |
| 40 | 27, 39 | opabex3d 6264 |
. . 3
⊢ (𝐺 ∈ 𝑊 → {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom 𝐼 ∧ (𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘)))))} ∈ V) |
| 41 | 22, 40 | eqeltrid 2316 |
. 2
⊢ (𝐺 ∈ 𝑊 → {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘))))} ∈ V) |
| 42 | 1, 19, 20, 41 | fvmptd3 5727 |
1
⊢ (𝐺 ∈ 𝑊 → (Walks‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓‘𝑘))))}) |