Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0grrusgr | Structured version Visualization version GIF version |
Description: The null graph represented by an empty set is a k-regular simple graph for every k. (Contributed by AV, 26-Dec-2020.) |
Ref | Expression |
---|---|
0grrusgr | ⊢ ∀𝑘 ∈ ℕ0* ∅ RegUSGraph 𝑘 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5177 | . 2 ⊢ ∅ ∈ V | |
2 | vtxval0 26931 | . 2 ⊢ (Vtx‘∅) = ∅ | |
3 | iedgval0 26932 | . 2 ⊢ (iEdg‘∅) = ∅ | |
4 | 0vtxrusgr 27466 | . 2 ⊢ ((∅ ∈ V ∧ (Vtx‘∅) = ∅ ∧ (iEdg‘∅) = ∅) → ∀𝑘 ∈ ℕ0* ∅ RegUSGraph 𝑘) | |
5 | 1, 2, 3, 4 | mp3an 1458 | 1 ⊢ ∀𝑘 ∈ ℕ0* ∅ RegUSGraph 𝑘 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2111 ∀wral 3070 Vcvv 3409 ∅c0 4225 class class class wbr 5032 ‘cfv 6335 ℕ0*cxnn0 12006 Vtxcvtx 26888 iEdgciedg 26889 RegUSGraph crusgr 27445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-i2m1 10643 ax-1ne0 10644 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-po 5443 df-so 5444 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-ov 7153 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-2 11737 df-slot 16545 df-base 16547 df-edgf 26882 df-vtx 26890 df-iedg 26891 df-uhgr 26950 df-upgr 26974 df-uspgr 27042 df-usgr 27043 df-rgr 27446 df-rusgr 27447 |
This theorem is referenced by: 0grrgr 27469 |
Copyright terms: Public domain | W3C validator |