Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2llnm4 Structured version   Visualization version   GIF version

Theorem 2llnm4 39572
Description: Two lattice lines that majorize the same atom always meet. (Contributed by NM, 20-Jul-2012.)
Hypotheses
Ref Expression
2llnm4.l = (le‘𝐾)
2llnm4.m = (meet‘𝐾)
2llnm4.z 0 = (0.‘𝐾)
2llnm4.a 𝐴 = (Atoms‘𝐾)
2llnm4.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
2llnm4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝑁𝑌𝑁) ∧ (𝑃 𝑋𝑃 𝑌)) → (𝑋 𝑌) ≠ 0 )

Proof of Theorem 2llnm4
StepHypRef Expression
1 hlatl 39361 . . 3 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
213ad2ant1 1134 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝑁𝑌𝑁) ∧ (𝑃 𝑋𝑃 𝑌)) → 𝐾 ∈ AtLat)
3 hllat 39364 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
433ad2ant1 1134 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝑁𝑌𝑁) ∧ (𝑃 𝑋𝑃 𝑌)) → 𝐾 ∈ Lat)
5 simp22 1208 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝑁𝑌𝑁) ∧ (𝑃 𝑋𝑃 𝑌)) → 𝑋𝑁)
6 eqid 2737 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
7 2llnm4.n . . . . 5 𝑁 = (LLines‘𝐾)
86, 7llnbase 39511 . . . 4 (𝑋𝑁𝑋 ∈ (Base‘𝐾))
95, 8syl 17 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝑁𝑌𝑁) ∧ (𝑃 𝑋𝑃 𝑌)) → 𝑋 ∈ (Base‘𝐾))
10 simp23 1209 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝑁𝑌𝑁) ∧ (𝑃 𝑋𝑃 𝑌)) → 𝑌𝑁)
116, 7llnbase 39511 . . . 4 (𝑌𝑁𝑌 ∈ (Base‘𝐾))
1210, 11syl 17 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝑁𝑌𝑁) ∧ (𝑃 𝑋𝑃 𝑌)) → 𝑌 ∈ (Base‘𝐾))
13 2llnm4.m . . . 4 = (meet‘𝐾)
146, 13latmcl 18485 . . 3 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌) ∈ (Base‘𝐾))
154, 9, 12, 14syl3anc 1373 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝑁𝑌𝑁) ∧ (𝑃 𝑋𝑃 𝑌)) → (𝑋 𝑌) ∈ (Base‘𝐾))
16 simp21 1207 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝑁𝑌𝑁) ∧ (𝑃 𝑋𝑃 𝑌)) → 𝑃𝐴)
17 simp3 1139 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝑁𝑌𝑁) ∧ (𝑃 𝑋𝑃 𝑌)) → (𝑃 𝑋𝑃 𝑌))
18 2llnm4.a . . . . . 6 𝐴 = (Atoms‘𝐾)
196, 18atbase 39290 . . . . 5 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
2016, 19syl 17 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝑁𝑌𝑁) ∧ (𝑃 𝑋𝑃 𝑌)) → 𝑃 ∈ (Base‘𝐾))
21 2llnm4.l . . . . 5 = (le‘𝐾)
226, 21, 13latlem12 18511 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → ((𝑃 𝑋𝑃 𝑌) ↔ 𝑃 (𝑋 𝑌)))
234, 20, 9, 12, 22syl13anc 1374 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝑁𝑌𝑁) ∧ (𝑃 𝑋𝑃 𝑌)) → ((𝑃 𝑋𝑃 𝑌) ↔ 𝑃 (𝑋 𝑌)))
2417, 23mpbid 232 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝑁𝑌𝑁) ∧ (𝑃 𝑋𝑃 𝑌)) → 𝑃 (𝑋 𝑌))
25 2llnm4.z . . 3 0 = (0.‘𝐾)
266, 21, 25, 18atlen0 39311 . 2 (((𝐾 ∈ AtLat ∧ (𝑋 𝑌) ∈ (Base‘𝐾) ∧ 𝑃𝐴) ∧ 𝑃 (𝑋 𝑌)) → (𝑋 𝑌) ≠ 0 )
272, 15, 16, 24, 26syl31anc 1375 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝑁𝑌𝑁) ∧ (𝑃 𝑋𝑃 𝑌)) → (𝑋 𝑌) ≠ 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940   class class class wbr 5143  cfv 6561  (class class class)co 7431  Basecbs 17247  lecple 17304  meetcmee 18358  0.cp0 18468  Latclat 18476  Atomscatm 39264  AtLatcal 39265  HLchlt 39351  LLinesclln 39493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-lat 18477  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-llines 39500
This theorem is referenced by:  2llnmeqat  39573  dalem2  39663
  Copyright terms: Public domain W3C validator