Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2llnm4 | Structured version Visualization version GIF version |
Description: Two lattice lines that majorize the same atom always meet. (Contributed by NM, 20-Jul-2012.) |
Ref | Expression |
---|---|
2llnm4.l | ⊢ ≤ = (le‘𝐾) |
2llnm4.m | ⊢ ∧ = (meet‘𝐾) |
2llnm4.z | ⊢ 0 = (0.‘𝐾) |
2llnm4.a | ⊢ 𝐴 = (Atoms‘𝐾) |
2llnm4.n | ⊢ 𝑁 = (LLines‘𝐾) |
Ref | Expression |
---|---|
2llnm4 | ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌)) → (𝑋 ∧ 𝑌) ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlatl 37374 | . . 3 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
2 | 1 | 3ad2ant1 1132 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌)) → 𝐾 ∈ AtLat) |
3 | hllat 37377 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
4 | 3 | 3ad2ant1 1132 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌)) → 𝐾 ∈ Lat) |
5 | simp22 1206 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌)) → 𝑋 ∈ 𝑁) | |
6 | eqid 2738 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
7 | 2llnm4.n | . . . . 5 ⊢ 𝑁 = (LLines‘𝐾) | |
8 | 6, 7 | llnbase 37523 | . . . 4 ⊢ (𝑋 ∈ 𝑁 → 𝑋 ∈ (Base‘𝐾)) |
9 | 5, 8 | syl 17 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌)) → 𝑋 ∈ (Base‘𝐾)) |
10 | simp23 1207 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌)) → 𝑌 ∈ 𝑁) | |
11 | 6, 7 | llnbase 37523 | . . . 4 ⊢ (𝑌 ∈ 𝑁 → 𝑌 ∈ (Base‘𝐾)) |
12 | 10, 11 | syl 17 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌)) → 𝑌 ∈ (Base‘𝐾)) |
13 | 2llnm4.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
14 | 6, 13 | latmcl 18158 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 ∧ 𝑌) ∈ (Base‘𝐾)) |
15 | 4, 9, 12, 14 | syl3anc 1370 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌)) → (𝑋 ∧ 𝑌) ∈ (Base‘𝐾)) |
16 | simp21 1205 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌)) → 𝑃 ∈ 𝐴) | |
17 | simp3 1137 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌)) → (𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌)) | |
18 | 2llnm4.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
19 | 6, 18 | atbase 37303 | . . . . 5 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
20 | 16, 19 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌)) → 𝑃 ∈ (Base‘𝐾)) |
21 | 2llnm4.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
22 | 6, 21, 13 | latlem12 18184 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → ((𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌) ↔ 𝑃 ≤ (𝑋 ∧ 𝑌))) |
23 | 4, 20, 9, 12, 22 | syl13anc 1371 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌)) → ((𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌) ↔ 𝑃 ≤ (𝑋 ∧ 𝑌))) |
24 | 17, 23 | mpbid 231 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌)) → 𝑃 ≤ (𝑋 ∧ 𝑌)) |
25 | 2llnm4.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
26 | 6, 21, 25, 18 | atlen0 37324 | . 2 ⊢ (((𝐾 ∈ AtLat ∧ (𝑋 ∧ 𝑌) ∈ (Base‘𝐾) ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ (𝑋 ∧ 𝑌)) → (𝑋 ∧ 𝑌) ≠ 0 ) |
27 | 2, 15, 16, 24, 26 | syl31anc 1372 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌)) → (𝑋 ∧ 𝑌) ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 lecple 16969 meetcmee 18030 0.cp0 18141 Latclat 18149 Atomscatm 37277 AtLatcal 37278 HLchlt 37364 LLinesclln 37505 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-lat 18150 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 df-llines 37512 |
This theorem is referenced by: 2llnmeqat 37585 dalem2 37675 |
Copyright terms: Public domain | W3C validator |