| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2llnm4 | Structured version Visualization version GIF version | ||
| Description: Two lattice lines that majorize the same atom always meet. (Contributed by NM, 20-Jul-2012.) |
| Ref | Expression |
|---|---|
| 2llnm4.l | ⊢ ≤ = (le‘𝐾) |
| 2llnm4.m | ⊢ ∧ = (meet‘𝐾) |
| 2llnm4.z | ⊢ 0 = (0.‘𝐾) |
| 2llnm4.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| 2llnm4.n | ⊢ 𝑁 = (LLines‘𝐾) |
| Ref | Expression |
|---|---|
| 2llnm4 | ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌)) → (𝑋 ∧ 𝑌) ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlatl 39383 | . . 3 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
| 2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌)) → 𝐾 ∈ AtLat) |
| 3 | hllat 39386 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 4 | 3 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌)) → 𝐾 ∈ Lat) |
| 5 | simp22 1208 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌)) → 𝑋 ∈ 𝑁) | |
| 6 | eqid 2736 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 7 | 2llnm4.n | . . . . 5 ⊢ 𝑁 = (LLines‘𝐾) | |
| 8 | 6, 7 | llnbase 39533 | . . . 4 ⊢ (𝑋 ∈ 𝑁 → 𝑋 ∈ (Base‘𝐾)) |
| 9 | 5, 8 | syl 17 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌)) → 𝑋 ∈ (Base‘𝐾)) |
| 10 | simp23 1209 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌)) → 𝑌 ∈ 𝑁) | |
| 11 | 6, 7 | llnbase 39533 | . . . 4 ⊢ (𝑌 ∈ 𝑁 → 𝑌 ∈ (Base‘𝐾)) |
| 12 | 10, 11 | syl 17 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌)) → 𝑌 ∈ (Base‘𝐾)) |
| 13 | 2llnm4.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 14 | 6, 13 | latmcl 18455 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 ∧ 𝑌) ∈ (Base‘𝐾)) |
| 15 | 4, 9, 12, 14 | syl3anc 1373 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌)) → (𝑋 ∧ 𝑌) ∈ (Base‘𝐾)) |
| 16 | simp21 1207 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌)) → 𝑃 ∈ 𝐴) | |
| 17 | simp3 1138 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌)) → (𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌)) | |
| 18 | 2llnm4.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 19 | 6, 18 | atbase 39312 | . . . . 5 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 20 | 16, 19 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌)) → 𝑃 ∈ (Base‘𝐾)) |
| 21 | 2llnm4.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 22 | 6, 21, 13 | latlem12 18481 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → ((𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌) ↔ 𝑃 ≤ (𝑋 ∧ 𝑌))) |
| 23 | 4, 20, 9, 12, 22 | syl13anc 1374 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌)) → ((𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌) ↔ 𝑃 ≤ (𝑋 ∧ 𝑌))) |
| 24 | 17, 23 | mpbid 232 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌)) → 𝑃 ≤ (𝑋 ∧ 𝑌)) |
| 25 | 2llnm4.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
| 26 | 6, 21, 25, 18 | atlen0 39333 | . 2 ⊢ (((𝐾 ∈ AtLat ∧ (𝑋 ∧ 𝑌) ∈ (Base‘𝐾) ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ (𝑋 ∧ 𝑌)) → (𝑋 ∧ 𝑌) ≠ 0 ) |
| 27 | 2, 15, 16, 24, 26 | syl31anc 1375 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌)) → (𝑋 ∧ 𝑌) ≠ 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 lecple 17283 meetcmee 18329 0.cp0 18438 Latclat 18446 Atomscatm 39286 AtLatcal 39287 HLchlt 39373 LLinesclln 39515 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-proset 18311 df-poset 18330 df-plt 18345 df-lub 18361 df-glb 18362 df-join 18363 df-meet 18364 df-p0 18440 df-lat 18447 df-covers 39289 df-ats 39290 df-atl 39321 df-cvlat 39345 df-hlat 39374 df-llines 39522 |
| This theorem is referenced by: 2llnmeqat 39595 dalem2 39685 |
| Copyright terms: Public domain | W3C validator |