Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2llnm4 Structured version   Visualization version   GIF version

Theorem 2llnm4 35726
Description: Two lattice lines that majorize the same atom always meet. (Contributed by NM, 20-Jul-2012.)
Hypotheses
Ref Expression
2llnm4.l = (le‘𝐾)
2llnm4.m = (meet‘𝐾)
2llnm4.z 0 = (0.‘𝐾)
2llnm4.a 𝐴 = (Atoms‘𝐾)
2llnm4.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
2llnm4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝑁𝑌𝑁) ∧ (𝑃 𝑋𝑃 𝑌)) → (𝑋 𝑌) ≠ 0 )

Proof of Theorem 2llnm4
StepHypRef Expression
1 hlatl 35516 . . 3 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
213ad2ant1 1124 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝑁𝑌𝑁) ∧ (𝑃 𝑋𝑃 𝑌)) → 𝐾 ∈ AtLat)
3 hllat 35519 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
433ad2ant1 1124 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝑁𝑌𝑁) ∧ (𝑃 𝑋𝑃 𝑌)) → 𝐾 ∈ Lat)
5 simp22 1221 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝑁𝑌𝑁) ∧ (𝑃 𝑋𝑃 𝑌)) → 𝑋𝑁)
6 eqid 2778 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
7 2llnm4.n . . . . 5 𝑁 = (LLines‘𝐾)
86, 7llnbase 35665 . . . 4 (𝑋𝑁𝑋 ∈ (Base‘𝐾))
95, 8syl 17 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝑁𝑌𝑁) ∧ (𝑃 𝑋𝑃 𝑌)) → 𝑋 ∈ (Base‘𝐾))
10 simp23 1222 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝑁𝑌𝑁) ∧ (𝑃 𝑋𝑃 𝑌)) → 𝑌𝑁)
116, 7llnbase 35665 . . . 4 (𝑌𝑁𝑌 ∈ (Base‘𝐾))
1210, 11syl 17 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝑁𝑌𝑁) ∧ (𝑃 𝑋𝑃 𝑌)) → 𝑌 ∈ (Base‘𝐾))
13 2llnm4.m . . . 4 = (meet‘𝐾)
146, 13latmcl 17438 . . 3 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌) ∈ (Base‘𝐾))
154, 9, 12, 14syl3anc 1439 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝑁𝑌𝑁) ∧ (𝑃 𝑋𝑃 𝑌)) → (𝑋 𝑌) ∈ (Base‘𝐾))
16 simp21 1220 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝑁𝑌𝑁) ∧ (𝑃 𝑋𝑃 𝑌)) → 𝑃𝐴)
17 simp3 1129 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝑁𝑌𝑁) ∧ (𝑃 𝑋𝑃 𝑌)) → (𝑃 𝑋𝑃 𝑌))
18 2llnm4.a . . . . . 6 𝐴 = (Atoms‘𝐾)
196, 18atbase 35445 . . . . 5 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
2016, 19syl 17 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝑁𝑌𝑁) ∧ (𝑃 𝑋𝑃 𝑌)) → 𝑃 ∈ (Base‘𝐾))
21 2llnm4.l . . . . 5 = (le‘𝐾)
226, 21, 13latlem12 17464 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → ((𝑃 𝑋𝑃 𝑌) ↔ 𝑃 (𝑋 𝑌)))
234, 20, 9, 12, 22syl13anc 1440 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝑁𝑌𝑁) ∧ (𝑃 𝑋𝑃 𝑌)) → ((𝑃 𝑋𝑃 𝑌) ↔ 𝑃 (𝑋 𝑌)))
2417, 23mpbid 224 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝑁𝑌𝑁) ∧ (𝑃 𝑋𝑃 𝑌)) → 𝑃 (𝑋 𝑌))
25 2llnm4.z . . 3 0 = (0.‘𝐾)
266, 21, 25, 18atlen0 35466 . 2 (((𝐾 ∈ AtLat ∧ (𝑋 𝑌) ∈ (Base‘𝐾) ∧ 𝑃𝐴) ∧ 𝑃 (𝑋 𝑌)) → (𝑋 𝑌) ≠ 0 )
272, 15, 16, 24, 26syl31anc 1441 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝑁𝑌𝑁) ∧ (𝑃 𝑋𝑃 𝑌)) → (𝑋 𝑌) ≠ 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  wne 2969   class class class wbr 4886  cfv 6135  (class class class)co 6922  Basecbs 16255  lecple 16345  meetcmee 17331  0.cp0 17423  Latclat 17431  Atomscatm 35419  AtLatcal 35420  HLchlt 35506  LLinesclln 35647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-proset 17314  df-poset 17332  df-plt 17344  df-lub 17360  df-glb 17361  df-join 17362  df-meet 17363  df-p0 17425  df-lat 17432  df-covers 35422  df-ats 35423  df-atl 35454  df-cvlat 35478  df-hlat 35507  df-llines 35654
This theorem is referenced by:  2llnmeqat  35727  dalem2  35817
  Copyright terms: Public domain W3C validator