| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pcl0N | Structured version Visualization version GIF version | ||
| Description: The projective subspace closure of the empty subspace. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pcl0.c | ⊢ 𝑈 = (PCl‘𝐾) |
| Ref | Expression |
|---|---|
| pcl0N | ⊢ (𝐾 ∈ HL → (𝑈‘∅) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4349 | . . . 4 ⊢ ∅ ⊆ (Atoms‘𝐾) | |
| 2 | eqid 2733 | . . . . 5 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 3 | eqid 2733 | . . . . 5 ⊢ (⊥𝑃‘𝐾) = (⊥𝑃‘𝐾) | |
| 4 | pcl0.c | . . . . 5 ⊢ 𝑈 = (PCl‘𝐾) | |
| 5 | 2, 3, 4 | pclss2polN 40041 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ ∅ ⊆ (Atoms‘𝐾)) → (𝑈‘∅) ⊆ ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘∅))) |
| 6 | 1, 5 | mpan2 691 | . . 3 ⊢ (𝐾 ∈ HL → (𝑈‘∅) ⊆ ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘∅))) |
| 7 | 3 | 2pol0N 40031 | . . 3 ⊢ (𝐾 ∈ HL → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘∅)) = ∅) |
| 8 | 6, 7 | sseqtrd 3967 | . 2 ⊢ (𝐾 ∈ HL → (𝑈‘∅) ⊆ ∅) |
| 9 | ss0 4351 | . 2 ⊢ ((𝑈‘∅) ⊆ ∅ → (𝑈‘∅) = ∅) | |
| 10 | 8, 9 | syl 17 | 1 ⊢ (𝐾 ∈ HL → (𝑈‘∅) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 ∅c0 4282 ‘cfv 6486 Atomscatm 39383 HLchlt 39470 PClcpclN 40007 ⊥𝑃cpolN 40022 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-proset 18202 df-poset 18221 df-plt 18236 df-lub 18252 df-glb 18253 df-join 18254 df-meet 18255 df-p0 18331 df-p1 18332 df-lat 18340 df-clat 18407 df-oposet 39296 df-ol 39298 df-oml 39299 df-covers 39386 df-ats 39387 df-atl 39418 df-cvlat 39442 df-hlat 39471 df-psubsp 39623 df-pmap 39624 df-pclN 40008 df-polarityN 40023 |
| This theorem is referenced by: pcl0bN 40043 pclfinclN 40070 |
| Copyright terms: Public domain | W3C validator |