| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pcl0N | Structured version Visualization version GIF version | ||
| Description: The projective subspace closure of the empty subspace. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pcl0.c | ⊢ 𝑈 = (PCl‘𝐾) |
| Ref | Expression |
|---|---|
| pcl0N | ⊢ (𝐾 ∈ HL → (𝑈‘∅) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4350 | . . . 4 ⊢ ∅ ⊆ (Atoms‘𝐾) | |
| 2 | eqid 2731 | . . . . 5 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 3 | eqid 2731 | . . . . 5 ⊢ (⊥𝑃‘𝐾) = (⊥𝑃‘𝐾) | |
| 4 | pcl0.c | . . . . 5 ⊢ 𝑈 = (PCl‘𝐾) | |
| 5 | 2, 3, 4 | pclss2polN 39966 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ ∅ ⊆ (Atoms‘𝐾)) → (𝑈‘∅) ⊆ ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘∅))) |
| 6 | 1, 5 | mpan2 691 | . . 3 ⊢ (𝐾 ∈ HL → (𝑈‘∅) ⊆ ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘∅))) |
| 7 | 3 | 2pol0N 39956 | . . 3 ⊢ (𝐾 ∈ HL → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘∅)) = ∅) |
| 8 | 6, 7 | sseqtrd 3971 | . 2 ⊢ (𝐾 ∈ HL → (𝑈‘∅) ⊆ ∅) |
| 9 | ss0 4352 | . 2 ⊢ ((𝑈‘∅) ⊆ ∅ → (𝑈‘∅) = ∅) | |
| 10 | 8, 9 | syl 17 | 1 ⊢ (𝐾 ∈ HL → (𝑈‘∅) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 ∅c0 4283 ‘cfv 6481 Atomscatm 39308 HLchlt 39395 PClcpclN 39932 ⊥𝑃cpolN 39947 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-oposet 39221 df-ol 39223 df-oml 39224 df-covers 39311 df-ats 39312 df-atl 39343 df-cvlat 39367 df-hlat 39396 df-psubsp 39548 df-pmap 39549 df-pclN 39933 df-polarityN 39948 |
| This theorem is referenced by: pcl0bN 39968 pclfinclN 39995 |
| Copyright terms: Public domain | W3C validator |