| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pcl0N | Structured version Visualization version GIF version | ||
| Description: The projective subspace closure of the empty subspace. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pcl0.c | ⊢ 𝑈 = (PCl‘𝐾) |
| Ref | Expression |
|---|---|
| pcl0N | ⊢ (𝐾 ∈ HL → (𝑈‘∅) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4382 | . . . 4 ⊢ ∅ ⊆ (Atoms‘𝐾) | |
| 2 | eqid 2734 | . . . . 5 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 3 | eqid 2734 | . . . . 5 ⊢ (⊥𝑃‘𝐾) = (⊥𝑃‘𝐾) | |
| 4 | pcl0.c | . . . . 5 ⊢ 𝑈 = (PCl‘𝐾) | |
| 5 | 2, 3, 4 | pclss2polN 39864 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ ∅ ⊆ (Atoms‘𝐾)) → (𝑈‘∅) ⊆ ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘∅))) |
| 6 | 1, 5 | mpan2 691 | . . 3 ⊢ (𝐾 ∈ HL → (𝑈‘∅) ⊆ ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘∅))) |
| 7 | 3 | 2pol0N 39854 | . . 3 ⊢ (𝐾 ∈ HL → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘∅)) = ∅) |
| 8 | 6, 7 | sseqtrd 4002 | . 2 ⊢ (𝐾 ∈ HL → (𝑈‘∅) ⊆ ∅) |
| 9 | ss0 4384 | . 2 ⊢ ((𝑈‘∅) ⊆ ∅ → (𝑈‘∅) = ∅) | |
| 10 | 8, 9 | syl 17 | 1 ⊢ (𝐾 ∈ HL → (𝑈‘∅) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ⊆ wss 3933 ∅c0 4315 ‘cfv 6542 Atomscatm 39205 HLchlt 39292 PClcpclN 39830 ⊥𝑃cpolN 39845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-iin 4976 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-proset 18315 df-poset 18334 df-plt 18349 df-lub 18365 df-glb 18366 df-join 18367 df-meet 18368 df-p0 18444 df-p1 18445 df-lat 18451 df-clat 18518 df-oposet 39118 df-ol 39120 df-oml 39121 df-covers 39208 df-ats 39209 df-atl 39240 df-cvlat 39264 df-hlat 39293 df-psubsp 39446 df-pmap 39447 df-pclN 39831 df-polarityN 39846 |
| This theorem is referenced by: pcl0bN 39866 pclfinclN 39893 |
| Copyright terms: Public domain | W3C validator |