Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pcl0N Structured version   Visualization version   GIF version

Theorem pcl0N 39390
Description: The projective subspace closure of the empty subspace. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
pcl0.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
pcl0N (𝐾 ∈ HL → (𝑈‘∅) = ∅)

Proof of Theorem pcl0N
StepHypRef Expression
1 0ss 4393 . . . 4 ∅ ⊆ (Atoms‘𝐾)
2 eqid 2728 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
3 eqid 2728 . . . . 5 (⊥𝑃𝐾) = (⊥𝑃𝐾)
4 pcl0.c . . . . 5 𝑈 = (PCl‘𝐾)
52, 3, 4pclss2polN 39389 . . . 4 ((𝐾 ∈ HL ∧ ∅ ⊆ (Atoms‘𝐾)) → (𝑈‘∅) ⊆ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘∅)))
61, 5mpan2 690 . . 3 (𝐾 ∈ HL → (𝑈‘∅) ⊆ ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘∅)))
732pol0N 39379 . . 3 (𝐾 ∈ HL → ((⊥𝑃𝐾)‘((⊥𝑃𝐾)‘∅)) = ∅)
86, 7sseqtrd 4019 . 2 (𝐾 ∈ HL → (𝑈‘∅) ⊆ ∅)
9 ss0 4395 . 2 ((𝑈‘∅) ⊆ ∅ → (𝑈‘∅) = ∅)
108, 9syl 17 1 (𝐾 ∈ HL → (𝑈‘∅) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  wss 3945  c0 4319  cfv 6543  Atomscatm 38730  HLchlt 38817  PClcpclN 39355  𝑃cpolN 39370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-iin 4995  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-proset 18281  df-poset 18299  df-plt 18316  df-lub 18332  df-glb 18333  df-join 18334  df-meet 18335  df-p0 18411  df-p1 18412  df-lat 18418  df-clat 18485  df-oposet 38643  df-ol 38645  df-oml 38646  df-covers 38733  df-ats 38734  df-atl 38765  df-cvlat 38789  df-hlat 38818  df-psubsp 38971  df-pmap 38972  df-pclN 39356  df-polarityN 39371
This theorem is referenced by:  pcl0bN  39391  pclfinclN  39418
  Copyright terms: Public domain W3C validator