![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pcl0N | Structured version Visualization version GIF version |
Description: The projective subspace closure of the empty subspace. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pcl0.c | β’ π = (PClβπΎ) |
Ref | Expression |
---|---|
pcl0N | β’ (πΎ β HL β (πββ ) = β ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4395 | . . . 4 β’ β β (AtomsβπΎ) | |
2 | eqid 2732 | . . . . 5 β’ (AtomsβπΎ) = (AtomsβπΎ) | |
3 | eqid 2732 | . . . . 5 β’ (β₯πβπΎ) = (β₯πβπΎ) | |
4 | pcl0.c | . . . . 5 β’ π = (PClβπΎ) | |
5 | 2, 3, 4 | pclss2polN 38780 | . . . 4 β’ ((πΎ β HL β§ β β (AtomsβπΎ)) β (πββ ) β ((β₯πβπΎ)β((β₯πβπΎ)ββ ))) |
6 | 1, 5 | mpan2 689 | . . 3 β’ (πΎ β HL β (πββ ) β ((β₯πβπΎ)β((β₯πβπΎ)ββ ))) |
7 | 3 | 2pol0N 38770 | . . 3 β’ (πΎ β HL β ((β₯πβπΎ)β((β₯πβπΎ)ββ )) = β ) |
8 | 6, 7 | sseqtrd 4021 | . 2 β’ (πΎ β HL β (πββ ) β β ) |
9 | ss0 4397 | . 2 β’ ((πββ ) β β β (πββ ) = β ) | |
10 | 8, 9 | syl 17 | 1 β’ (πΎ β HL β (πββ ) = β ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 β wss 3947 β c0 4321 βcfv 6540 Atomscatm 38121 HLchlt 38208 PClcpclN 38746 β₯πcpolN 38761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-proset 18244 df-poset 18262 df-plt 18279 df-lub 18295 df-glb 18296 df-join 18297 df-meet 18298 df-p0 18374 df-p1 18375 df-lat 18381 df-clat 18448 df-oposet 38034 df-ol 38036 df-oml 38037 df-covers 38124 df-ats 38125 df-atl 38156 df-cvlat 38180 df-hlat 38209 df-psubsp 38362 df-pmap 38363 df-pclN 38747 df-polarityN 38762 |
This theorem is referenced by: pcl0bN 38782 pclfinclN 38809 |
Copyright terms: Public domain | W3C validator |