MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  precsexlem8 Structured version   Visualization version   GIF version

Theorem precsexlem8 28155
Description: Lemma for surreal reciprocal. Show that the left and right functions give sets of surreals. (Contributed by Scott Fenton, 13-Mar-2025.)
Hypotheses
Ref Expression
precsexlem.1 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
precsexlem.2 𝐿 = (1st𝐹)
precsexlem.3 𝑅 = (2nd𝐹)
precsexlem.4 (𝜑𝐴 No )
precsexlem.5 (𝜑 → 0s <s 𝐴)
precsexlem.6 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
Assertion
Ref Expression
precsexlem8 ((𝜑𝐼 ∈ ω) → ((𝐿𝐼) ⊆ No ∧ (𝑅𝐼) ⊆ No ))
Distinct variable groups:   𝐴,𝑎,𝑙,𝑝,𝑟,𝑥,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦,𝑦𝐿,𝑦𝑅   𝐹,𝑙,𝑝   𝐿,𝑎,𝑙,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝑅,𝑎,𝑙,𝑟,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝜑,𝑎,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑟,𝑝,𝑙,𝑥𝑂)   𝑅(𝑥,𝑦,𝑝,𝑥𝑂)   𝐹(𝑥,𝑦,𝑟,𝑎,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐼(𝑥,𝑦,𝑟,𝑝,𝑎,𝑙,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐿(𝑥,𝑦,𝑟,𝑝,𝑥𝑂)

Proof of Theorem precsexlem8
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6875 . . . . . 6 (𝑖 = ∅ → (𝐿𝑖) = (𝐿‘∅))
21sseq1d 3990 . . . . 5 (𝑖 = ∅ → ((𝐿𝑖) ⊆ No ↔ (𝐿‘∅) ⊆ No ))
3 fveq2 6875 . . . . . 6 (𝑖 = ∅ → (𝑅𝑖) = (𝑅‘∅))
43sseq1d 3990 . . . . 5 (𝑖 = ∅ → ((𝑅𝑖) ⊆ No ↔ (𝑅‘∅) ⊆ No ))
52, 4anbi12d 632 . . . 4 (𝑖 = ∅ → (((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No ) ↔ ((𝐿‘∅) ⊆ No ∧ (𝑅‘∅) ⊆ No )))
65imbi2d 340 . . 3 (𝑖 = ∅ → ((𝜑 → ((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No )) ↔ (𝜑 → ((𝐿‘∅) ⊆ No ∧ (𝑅‘∅) ⊆ No ))))
7 fveq2 6875 . . . . . 6 (𝑖 = 𝑗 → (𝐿𝑖) = (𝐿𝑗))
87sseq1d 3990 . . . . 5 (𝑖 = 𝑗 → ((𝐿𝑖) ⊆ No ↔ (𝐿𝑗) ⊆ No ))
9 fveq2 6875 . . . . . 6 (𝑖 = 𝑗 → (𝑅𝑖) = (𝑅𝑗))
109sseq1d 3990 . . . . 5 (𝑖 = 𝑗 → ((𝑅𝑖) ⊆ No ↔ (𝑅𝑗) ⊆ No ))
118, 10anbi12d 632 . . . 4 (𝑖 = 𝑗 → (((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No ) ↔ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )))
1211imbi2d 340 . . 3 (𝑖 = 𝑗 → ((𝜑 → ((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No )) ↔ (𝜑 → ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No ))))
13 fveq2 6875 . . . . . 6 (𝑖 = suc 𝑗 → (𝐿𝑖) = (𝐿‘suc 𝑗))
1413sseq1d 3990 . . . . 5 (𝑖 = suc 𝑗 → ((𝐿𝑖) ⊆ No ↔ (𝐿‘suc 𝑗) ⊆ No ))
15 fveq2 6875 . . . . . 6 (𝑖 = suc 𝑗 → (𝑅𝑖) = (𝑅‘suc 𝑗))
1615sseq1d 3990 . . . . 5 (𝑖 = suc 𝑗 → ((𝑅𝑖) ⊆ No ↔ (𝑅‘suc 𝑗) ⊆ No ))
1714, 16anbi12d 632 . . . 4 (𝑖 = suc 𝑗 → (((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No ) ↔ ((𝐿‘suc 𝑗) ⊆ No ∧ (𝑅‘suc 𝑗) ⊆ No )))
1817imbi2d 340 . . 3 (𝑖 = suc 𝑗 → ((𝜑 → ((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No )) ↔ (𝜑 → ((𝐿‘suc 𝑗) ⊆ No ∧ (𝑅‘suc 𝑗) ⊆ No ))))
19 fveq2 6875 . . . . . 6 (𝑖 = 𝐼 → (𝐿𝑖) = (𝐿𝐼))
2019sseq1d 3990 . . . . 5 (𝑖 = 𝐼 → ((𝐿𝑖) ⊆ No ↔ (𝐿𝐼) ⊆ No ))
21 fveq2 6875 . . . . . 6 (𝑖 = 𝐼 → (𝑅𝑖) = (𝑅𝐼))
2221sseq1d 3990 . . . . 5 (𝑖 = 𝐼 → ((𝑅𝑖) ⊆ No ↔ (𝑅𝐼) ⊆ No ))
2320, 22anbi12d 632 . . . 4 (𝑖 = 𝐼 → (((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No ) ↔ ((𝐿𝐼) ⊆ No ∧ (𝑅𝐼) ⊆ No )))
2423imbi2d 340 . . 3 (𝑖 = 𝐼 → ((𝜑 → ((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No )) ↔ (𝜑 → ((𝐿𝐼) ⊆ No ∧ (𝑅𝐼) ⊆ No ))))
25 precsexlem.1 . . . . . . 7 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
26 precsexlem.2 . . . . . . 7 𝐿 = (1st𝐹)
27 precsexlem.3 . . . . . . 7 𝑅 = (2nd𝐹)
2825, 26, 27precsexlem1 28148 . . . . . 6 (𝐿‘∅) = { 0s }
29 0sno 27788 . . . . . . 7 0s No
30 snssi 4784 . . . . . . 7 ( 0s No → { 0s } ⊆ No )
3129, 30ax-mp 5 . . . . . 6 { 0s } ⊆ No
3228, 31eqsstri 4005 . . . . 5 (𝐿‘∅) ⊆ No
3325, 26, 27precsexlem2 28149 . . . . . 6 (𝑅‘∅) = ∅
34 0ss 4375 . . . . . 6 ∅ ⊆ No
3533, 34eqsstri 4005 . . . . 5 (𝑅‘∅) ⊆ No
3632, 35pm3.2i 470 . . . 4 ((𝐿‘∅) ⊆ No ∧ (𝑅‘∅) ⊆ No )
3736a1i 11 . . 3 (𝜑 → ((𝐿‘∅) ⊆ No ∧ (𝑅‘∅) ⊆ No ))
3825, 26, 27precsexlem4 28151 . . . . . . . . 9 (𝑗 ∈ ω → (𝐿‘suc 𝑗) = ((𝐿𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
39383ad2ant2 1134 . . . . . . . 8 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (𝐿‘suc 𝑗) = ((𝐿𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
40 simp3l 1202 . . . . . . . . 9 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (𝐿𝑗) ⊆ No )
41 1sno 27789 . . . . . . . . . . . . . . . 16 1s No
4241a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 1s No )
43 rightssno 27837 . . . . . . . . . . . . . . . . . 18 ( R ‘𝐴) ⊆ No
44 simprl 770 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝑅 ∈ ( R ‘𝐴))
4543, 44sselid 3956 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝑅 No )
46 precsexlem.4 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 No )
47463ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → 𝐴 No )
4847adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝐴 No )
4945, 48subscld 28010 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝑥𝑅 -s 𝐴) ∈ No )
50 simpl3l 1229 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐿𝑗) ⊆ No )
51 simprr 772 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑦𝐿 ∈ (𝐿𝑗))
5250, 51sseldd 3959 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑦𝐿 No )
5349, 52mulscld 28078 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿) ∈ No )
5442, 53addscld 27930 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) ∈ No )
5529a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 0s No )
56 precsexlem.5 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0s <s 𝐴)
57563ad2ant1 1133 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → 0s <s 𝐴)
5857adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 0s <s 𝐴)
59 breq2 5123 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑂 = 𝑥𝑅 → (𝐴 <s 𝑥𝑂𝐴 <s 𝑥𝑅))
60 rightval 27820 . . . . . . . . . . . . . . . . . . 19 ( R ‘𝐴) = {𝑥𝑂 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑥𝑂}
6159, 60elrab2 3674 . . . . . . . . . . . . . . . . . 18 (𝑥𝑅 ∈ ( R ‘𝐴) ↔ (𝑥𝑅 ∈ ( O ‘( bday 𝐴)) ∧ 𝐴 <s 𝑥𝑅))
6261simprbi 496 . . . . . . . . . . . . . . . . 17 (𝑥𝑅 ∈ ( R ‘𝐴) → 𝐴 <s 𝑥𝑅)
6344, 62syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝐴 <s 𝑥𝑅)
6455, 48, 45, 58, 63slttrd 27721 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 0s <s 𝑥𝑅)
6564sgt0ne0d 27797 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝑅 ≠ 0s )
66 breq2 5123 . . . . . . . . . . . . . . . . 17 (𝑥𝑂 = 𝑥𝑅 → ( 0s <s 𝑥𝑂 ↔ 0s <s 𝑥𝑅))
67 oveq1 7410 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑂 = 𝑥𝑅 → (𝑥𝑂 ·s 𝑦) = (𝑥𝑅 ·s 𝑦))
6867eqeq1d 2737 . . . . . . . . . . . . . . . . . 18 (𝑥𝑂 = 𝑥𝑅 → ((𝑥𝑂 ·s 𝑦) = 1s ↔ (𝑥𝑅 ·s 𝑦) = 1s ))
6968rexbidv 3164 . . . . . . . . . . . . . . . . 17 (𝑥𝑂 = 𝑥𝑅 → (∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ↔ ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s ))
7066, 69imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑥𝑂 = 𝑥𝑅 → (( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ) ↔ ( 0s <s 𝑥𝑅 → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s )))
71 precsexlem.6 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
72713ad2ant1 1133 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
7372adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
74 elun2 4158 . . . . . . . . . . . . . . . . 17 (𝑥𝑅 ∈ ( R ‘𝐴) → 𝑥𝑅 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
7544, 74syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝑅 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
7670, 73, 75rspcdva 3602 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( 0s <s 𝑥𝑅 → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s ))
7764, 76mpd 15 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s )
7854, 45, 65, 77divsclwd 28138 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ∈ No )
79 eleq1 2822 . . . . . . . . . . . . 13 (𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) → (𝑎 No ↔ (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ∈ No ))
8078, 79syl5ibrcom 247 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) → 𝑎 No ))
8180rexlimdvva 3198 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) → 𝑎 No ))
8281abssdv 4043 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ⊆ No )
8341a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 1s No )
84 leftssno 27836 . . . . . . . . . . . . . . . . . 18 ( L ‘𝐴) ⊆ No
85 ssrab2 4055 . . . . . . . . . . . . . . . . . . 19 {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ⊆ ( L ‘𝐴)
86 simprl 770 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})
8785, 86sselid 3956 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝐿 ∈ ( L ‘𝐴))
8884, 87sselid 3956 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝐿 No )
8947adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝐴 No )
9088, 89subscld 28010 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑥𝐿 -s 𝐴) ∈ No )
91 simpl3r 1230 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑅𝑗) ⊆ No )
92 simprr 772 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑦𝑅 ∈ (𝑅𝑗))
9391, 92sseldd 3959 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑦𝑅 No )
9490, 93mulscld 28078 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅) ∈ No )
9583, 94addscld 27930 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) ∈ No )
96 breq2 5123 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑥𝐿 → ( 0s <s 𝑥 ↔ 0s <s 𝑥𝐿))
9796elrab 3671 . . . . . . . . . . . . . . . . 17 (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ↔ (𝑥𝐿 ∈ ( L ‘𝐴) ∧ 0s <s 𝑥𝐿))
9897simprbi 496 . . . . . . . . . . . . . . . 16 (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → 0s <s 𝑥𝐿)
9986, 98syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 0s <s 𝑥𝐿)
10099sgt0ne0d 27797 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝐿 ≠ 0s )
101 breq2 5123 . . . . . . . . . . . . . . . . 17 (𝑥𝑂 = 𝑥𝐿 → ( 0s <s 𝑥𝑂 ↔ 0s <s 𝑥𝐿))
102 oveq1 7410 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑂 = 𝑥𝐿 → (𝑥𝑂 ·s 𝑦) = (𝑥𝐿 ·s 𝑦))
103102eqeq1d 2737 . . . . . . . . . . . . . . . . . 18 (𝑥𝑂 = 𝑥𝐿 → ((𝑥𝑂 ·s 𝑦) = 1s ↔ (𝑥𝐿 ·s 𝑦) = 1s ))
104103rexbidv 3164 . . . . . . . . . . . . . . . . 17 (𝑥𝑂 = 𝑥𝐿 → (∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ↔ ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s ))
105101, 104imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑥𝑂 = 𝑥𝐿 → (( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ) ↔ ( 0s <s 𝑥𝐿 → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s )))
10672adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
107 elun1 4157 . . . . . . . . . . . . . . . . 17 (𝑥𝐿 ∈ ( L ‘𝐴) → 𝑥𝐿 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
10887, 107syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝐿 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
109105, 106, 108rspcdva 3602 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 0s <s 𝑥𝐿 → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s ))
11099, 109mpd 15 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s )
11195, 88, 100, 110divsclwd 28138 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) ∈ No )
112 eleq1 2822 . . . . . . . . . . . . 13 (𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) → (𝑎 No ↔ (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) ∈ No ))
113111, 112syl5ibrcom 247 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) → 𝑎 No ))
114113rexlimdvva 3198 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) → 𝑎 No ))
115114abssdv 4043 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)} ⊆ No )
11682, 115unssd 4167 . . . . . . . . 9 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}) ⊆ No )
11740, 116unssd 4167 . . . . . . . 8 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → ((𝐿𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})) ⊆ No )
11839, 117eqsstrd 3993 . . . . . . 7 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (𝐿‘suc 𝑗) ⊆ No )
11925, 26, 27precsexlem5 28152 . . . . . . . . 9 (𝑗 ∈ ω → (𝑅‘suc 𝑗) = ((𝑅𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
1201193ad2ant2 1134 . . . . . . . 8 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (𝑅‘suc 𝑗) = ((𝑅𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
121 simp3r 1203 . . . . . . . . 9 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (𝑅𝑗) ⊆ No )
12241a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 1s No )
123 simprl 770 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})
12485, 123sselid 3956 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝐿 ∈ ( L ‘𝐴))
12584, 124sselid 3956 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝐿 No )
12647adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝐴 No )
127125, 126subscld 28010 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝑥𝐿 -s 𝐴) ∈ No )
128 simpl3l 1229 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐿𝑗) ⊆ No )
129 simprr 772 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑦𝐿 ∈ (𝐿𝑗))
130128, 129sseldd 3959 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑦𝐿 No )
131127, 130mulscld 28078 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿) ∈ No )
132122, 131addscld 27930 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) ∈ No )
133123, 98syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 0s <s 𝑥𝐿)
134133sgt0ne0d 27797 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝐿 ≠ 0s )
13572adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
136124, 107syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝐿 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
137105, 135, 136rspcdva 3602 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( 0s <s 𝑥𝐿 → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s ))
138133, 137mpd 15 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s )
139132, 125, 134, 138divsclwd 28138 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ∈ No )
140 eleq1 2822 . . . . . . . . . . . . 13 (𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) → (𝑎 No ↔ (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ∈ No ))
141139, 140syl5ibrcom 247 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) → 𝑎 No ))
142141rexlimdvva 3198 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) → 𝑎 No ))
143142abssdv 4043 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ⊆ No )
14441a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 1s No )
145 simprl 770 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝑅 ∈ ( R ‘𝐴))
14643, 145sselid 3956 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝑅 No )
14747adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝐴 No )
148146, 147subscld 28010 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑥𝑅 -s 𝐴) ∈ No )
149 simpl3r 1230 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑅𝑗) ⊆ No )
150 simprr 772 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑦𝑅 ∈ (𝑅𝑗))
151149, 150sseldd 3959 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑦𝑅 No )
152148, 151mulscld 28078 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅) ∈ No )
153144, 152addscld 27930 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) ∈ No )
15429a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 0s No )
15557adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 0s <s 𝐴)
156145, 62syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝐴 <s 𝑥𝑅)
157154, 147, 146, 155, 156slttrd 27721 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 0s <s 𝑥𝑅)
158157sgt0ne0d 27797 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝑅 ≠ 0s )
15972adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
160145, 74syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝑅 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
16170, 159, 160rspcdva 3602 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 0s <s 𝑥𝑅 → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s ))
162157, 161mpd 15 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s )
163153, 146, 158, 162divsclwd 28138 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) ∈ No )
164 eleq1 2822 . . . . . . . . . . . . 13 (𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) → (𝑎 No ↔ (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) ∈ No ))
165163, 164syl5ibrcom 247 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) → 𝑎 No ))
166165rexlimdvva 3198 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) → 𝑎 No ))
167166abssdv 4043 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)} ⊆ No )
168143, 167unssd 4167 . . . . . . . . 9 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}) ⊆ No )
169121, 168unssd 4167 . . . . . . . 8 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → ((𝑅𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})) ⊆ No )
170120, 169eqsstrd 3993 . . . . . . 7 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (𝑅‘suc 𝑗) ⊆ No )
171118, 170jca 511 . . . . . 6 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → ((𝐿‘suc 𝑗) ⊆ No ∧ (𝑅‘suc 𝑗) ⊆ No ))
1721713exp 1119 . . . . 5 (𝜑 → (𝑗 ∈ ω → (((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No ) → ((𝐿‘suc 𝑗) ⊆ No ∧ (𝑅‘suc 𝑗) ⊆ No ))))
173172com12 32 . . . 4 (𝑗 ∈ ω → (𝜑 → (((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No ) → ((𝐿‘suc 𝑗) ⊆ No ∧ (𝑅‘suc 𝑗) ⊆ No ))))
174173a2d 29 . . 3 (𝑗 ∈ ω → ((𝜑 → ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (𝜑 → ((𝐿‘suc 𝑗) ⊆ No ∧ (𝑅‘suc 𝑗) ⊆ No ))))
1756, 12, 18, 24, 37, 174finds 7890 . 2 (𝐼 ∈ ω → (𝜑 → ((𝐿𝐼) ⊆ No ∧ (𝑅𝐼) ⊆ No )))
176175impcom 407 1 ((𝜑𝐼 ∈ ω) → ((𝐿𝐼) ⊆ No ∧ (𝑅𝐼) ⊆ No ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  {cab 2713  wral 3051  wrex 3060  {crab 3415  Vcvv 3459  csb 3874  cun 3924  wss 3926  c0 4308  {csn 4601  cop 4607   class class class wbr 5119  cmpt 5201  ccom 5658  suc csuc 6354  cfv 6530  (class class class)co 7403  ωcom 7859  1st c1st 7984  2nd c2nd 7985  reccrdg 8421   No csur 27601   <s cslt 27602   bday cbday 27603   0s c0s 27784   1s c1s 27785   O cold 27799   L cleft 27801   R cright 27802   +s cadds 27909   -s csubs 27969   ·s cmuls 28049   /su cdivs 28130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-nadd 8676  df-no 27604  df-slt 27605  df-bday 27606  df-sle 27707  df-sslt 27743  df-scut 27745  df-0s 27786  df-1s 27787  df-made 27803  df-old 27804  df-left 27806  df-right 27807  df-norec 27888  df-norec2 27899  df-adds 27910  df-negs 27970  df-subs 27971  df-muls 28050  df-divs 28131
This theorem is referenced by:  precsexlem9  28156  precsexlem10  28157
  Copyright terms: Public domain W3C validator