MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  precsexlem8 Structured version   Visualization version   GIF version

Theorem precsexlem8 28238
Description: Lemma for surreal reciprocal. Show that the left and right functions give sets of surreals. (Contributed by Scott Fenton, 13-Mar-2025.)
Hypotheses
Ref Expression
precsexlem.1 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
precsexlem.2 𝐿 = (1st𝐹)
precsexlem.3 𝑅 = (2nd𝐹)
precsexlem.4 (𝜑𝐴 No )
precsexlem.5 (𝜑 → 0s <s 𝐴)
precsexlem.6 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
Assertion
Ref Expression
precsexlem8 ((𝜑𝐼 ∈ ω) → ((𝐿𝐼) ⊆ No ∧ (𝑅𝐼) ⊆ No ))
Distinct variable groups:   𝐴,𝑎,𝑙,𝑝,𝑟,𝑥,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦,𝑦𝐿,𝑦𝑅   𝐹,𝑙,𝑝   𝐿,𝑎,𝑙,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝑅,𝑎,𝑙,𝑟,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝜑,𝑎,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑟,𝑝,𝑙,𝑥𝑂)   𝑅(𝑥,𝑦,𝑝,𝑥𝑂)   𝐹(𝑥,𝑦,𝑟,𝑎,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐼(𝑥,𝑦,𝑟,𝑝,𝑎,𝑙,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐿(𝑥,𝑦,𝑟,𝑝,𝑥𝑂)

Proof of Theorem precsexlem8
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6906 . . . . . 6 (𝑖 = ∅ → (𝐿𝑖) = (𝐿‘∅))
21sseq1d 4015 . . . . 5 (𝑖 = ∅ → ((𝐿𝑖) ⊆ No ↔ (𝐿‘∅) ⊆ No ))
3 fveq2 6906 . . . . . 6 (𝑖 = ∅ → (𝑅𝑖) = (𝑅‘∅))
43sseq1d 4015 . . . . 5 (𝑖 = ∅ → ((𝑅𝑖) ⊆ No ↔ (𝑅‘∅) ⊆ No ))
52, 4anbi12d 632 . . . 4 (𝑖 = ∅ → (((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No ) ↔ ((𝐿‘∅) ⊆ No ∧ (𝑅‘∅) ⊆ No )))
65imbi2d 340 . . 3 (𝑖 = ∅ → ((𝜑 → ((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No )) ↔ (𝜑 → ((𝐿‘∅) ⊆ No ∧ (𝑅‘∅) ⊆ No ))))
7 fveq2 6906 . . . . . 6 (𝑖 = 𝑗 → (𝐿𝑖) = (𝐿𝑗))
87sseq1d 4015 . . . . 5 (𝑖 = 𝑗 → ((𝐿𝑖) ⊆ No ↔ (𝐿𝑗) ⊆ No ))
9 fveq2 6906 . . . . . 6 (𝑖 = 𝑗 → (𝑅𝑖) = (𝑅𝑗))
109sseq1d 4015 . . . . 5 (𝑖 = 𝑗 → ((𝑅𝑖) ⊆ No ↔ (𝑅𝑗) ⊆ No ))
118, 10anbi12d 632 . . . 4 (𝑖 = 𝑗 → (((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No ) ↔ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )))
1211imbi2d 340 . . 3 (𝑖 = 𝑗 → ((𝜑 → ((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No )) ↔ (𝜑 → ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No ))))
13 fveq2 6906 . . . . . 6 (𝑖 = suc 𝑗 → (𝐿𝑖) = (𝐿‘suc 𝑗))
1413sseq1d 4015 . . . . 5 (𝑖 = suc 𝑗 → ((𝐿𝑖) ⊆ No ↔ (𝐿‘suc 𝑗) ⊆ No ))
15 fveq2 6906 . . . . . 6 (𝑖 = suc 𝑗 → (𝑅𝑖) = (𝑅‘suc 𝑗))
1615sseq1d 4015 . . . . 5 (𝑖 = suc 𝑗 → ((𝑅𝑖) ⊆ No ↔ (𝑅‘suc 𝑗) ⊆ No ))
1714, 16anbi12d 632 . . . 4 (𝑖 = suc 𝑗 → (((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No ) ↔ ((𝐿‘suc 𝑗) ⊆ No ∧ (𝑅‘suc 𝑗) ⊆ No )))
1817imbi2d 340 . . 3 (𝑖 = suc 𝑗 → ((𝜑 → ((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No )) ↔ (𝜑 → ((𝐿‘suc 𝑗) ⊆ No ∧ (𝑅‘suc 𝑗) ⊆ No ))))
19 fveq2 6906 . . . . . 6 (𝑖 = 𝐼 → (𝐿𝑖) = (𝐿𝐼))
2019sseq1d 4015 . . . . 5 (𝑖 = 𝐼 → ((𝐿𝑖) ⊆ No ↔ (𝐿𝐼) ⊆ No ))
21 fveq2 6906 . . . . . 6 (𝑖 = 𝐼 → (𝑅𝑖) = (𝑅𝐼))
2221sseq1d 4015 . . . . 5 (𝑖 = 𝐼 → ((𝑅𝑖) ⊆ No ↔ (𝑅𝐼) ⊆ No ))
2320, 22anbi12d 632 . . . 4 (𝑖 = 𝐼 → (((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No ) ↔ ((𝐿𝐼) ⊆ No ∧ (𝑅𝐼) ⊆ No )))
2423imbi2d 340 . . 3 (𝑖 = 𝐼 → ((𝜑 → ((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No )) ↔ (𝜑 → ((𝐿𝐼) ⊆ No ∧ (𝑅𝐼) ⊆ No ))))
25 precsexlem.1 . . . . . . 7 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
26 precsexlem.2 . . . . . . 7 𝐿 = (1st𝐹)
27 precsexlem.3 . . . . . . 7 𝑅 = (2nd𝐹)
2825, 26, 27precsexlem1 28231 . . . . . 6 (𝐿‘∅) = { 0s }
29 0sno 27871 . . . . . . 7 0s No
30 snssi 4808 . . . . . . 7 ( 0s No → { 0s } ⊆ No )
3129, 30ax-mp 5 . . . . . 6 { 0s } ⊆ No
3228, 31eqsstri 4030 . . . . 5 (𝐿‘∅) ⊆ No
3325, 26, 27precsexlem2 28232 . . . . . 6 (𝑅‘∅) = ∅
34 0ss 4400 . . . . . 6 ∅ ⊆ No
3533, 34eqsstri 4030 . . . . 5 (𝑅‘∅) ⊆ No
3632, 35pm3.2i 470 . . . 4 ((𝐿‘∅) ⊆ No ∧ (𝑅‘∅) ⊆ No )
3736a1i 11 . . 3 (𝜑 → ((𝐿‘∅) ⊆ No ∧ (𝑅‘∅) ⊆ No ))
3825, 26, 27precsexlem4 28234 . . . . . . . . 9 (𝑗 ∈ ω → (𝐿‘suc 𝑗) = ((𝐿𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
39383ad2ant2 1135 . . . . . . . 8 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (𝐿‘suc 𝑗) = ((𝐿𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
40 simp3l 1202 . . . . . . . . 9 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (𝐿𝑗) ⊆ No )
41 1sno 27872 . . . . . . . . . . . . . . . 16 1s No
4241a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 1s No )
43 rightssno 27920 . . . . . . . . . . . . . . . . . 18 ( R ‘𝐴) ⊆ No
44 simprl 771 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝑅 ∈ ( R ‘𝐴))
4543, 44sselid 3981 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝑅 No )
46 precsexlem.4 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 No )
47463ad2ant1 1134 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → 𝐴 No )
4847adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝐴 No )
4945, 48subscld 28093 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝑥𝑅 -s 𝐴) ∈ No )
50 simpl3l 1229 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐿𝑗) ⊆ No )
51 simprr 773 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑦𝐿 ∈ (𝐿𝑗))
5250, 51sseldd 3984 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑦𝐿 No )
5349, 52mulscld 28161 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿) ∈ No )
5442, 53addscld 28013 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) ∈ No )
5529a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 0s No )
56 precsexlem.5 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0s <s 𝐴)
57563ad2ant1 1134 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → 0s <s 𝐴)
5857adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 0s <s 𝐴)
59 breq2 5147 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑂 = 𝑥𝑅 → (𝐴 <s 𝑥𝑂𝐴 <s 𝑥𝑅))
60 rightval 27903 . . . . . . . . . . . . . . . . . . 19 ( R ‘𝐴) = {𝑥𝑂 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑥𝑂}
6159, 60elrab2 3695 . . . . . . . . . . . . . . . . . 18 (𝑥𝑅 ∈ ( R ‘𝐴) ↔ (𝑥𝑅 ∈ ( O ‘( bday 𝐴)) ∧ 𝐴 <s 𝑥𝑅))
6261simprbi 496 . . . . . . . . . . . . . . . . 17 (𝑥𝑅 ∈ ( R ‘𝐴) → 𝐴 <s 𝑥𝑅)
6344, 62syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝐴 <s 𝑥𝑅)
6455, 48, 45, 58, 63slttrd 27804 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 0s <s 𝑥𝑅)
6564sgt0ne0d 27880 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝑅 ≠ 0s )
66 breq2 5147 . . . . . . . . . . . . . . . . 17 (𝑥𝑂 = 𝑥𝑅 → ( 0s <s 𝑥𝑂 ↔ 0s <s 𝑥𝑅))
67 oveq1 7438 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑂 = 𝑥𝑅 → (𝑥𝑂 ·s 𝑦) = (𝑥𝑅 ·s 𝑦))
6867eqeq1d 2739 . . . . . . . . . . . . . . . . . 18 (𝑥𝑂 = 𝑥𝑅 → ((𝑥𝑂 ·s 𝑦) = 1s ↔ (𝑥𝑅 ·s 𝑦) = 1s ))
6968rexbidv 3179 . . . . . . . . . . . . . . . . 17 (𝑥𝑂 = 𝑥𝑅 → (∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ↔ ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s ))
7066, 69imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑥𝑂 = 𝑥𝑅 → (( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ) ↔ ( 0s <s 𝑥𝑅 → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s )))
71 precsexlem.6 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
72713ad2ant1 1134 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
7372adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
74 elun2 4183 . . . . . . . . . . . . . . . . 17 (𝑥𝑅 ∈ ( R ‘𝐴) → 𝑥𝑅 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
7544, 74syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝑅 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
7670, 73, 75rspcdva 3623 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( 0s <s 𝑥𝑅 → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s ))
7764, 76mpd 15 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s )
7854, 45, 65, 77divsclwd 28221 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ∈ No )
79 eleq1 2829 . . . . . . . . . . . . 13 (𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) → (𝑎 No ↔ (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ∈ No ))
8078, 79syl5ibrcom 247 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) → 𝑎 No ))
8180rexlimdvva 3213 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) → 𝑎 No ))
8281abssdv 4068 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ⊆ No )
8341a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 1s No )
84 leftssno 27919 . . . . . . . . . . . . . . . . . 18 ( L ‘𝐴) ⊆ No
85 ssrab2 4080 . . . . . . . . . . . . . . . . . . 19 {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ⊆ ( L ‘𝐴)
86 simprl 771 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})
8785, 86sselid 3981 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝐿 ∈ ( L ‘𝐴))
8884, 87sselid 3981 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝐿 No )
8947adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝐴 No )
9088, 89subscld 28093 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑥𝐿 -s 𝐴) ∈ No )
91 simpl3r 1230 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑅𝑗) ⊆ No )
92 simprr 773 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑦𝑅 ∈ (𝑅𝑗))
9391, 92sseldd 3984 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑦𝑅 No )
9490, 93mulscld 28161 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅) ∈ No )
9583, 94addscld 28013 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) ∈ No )
96 breq2 5147 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑥𝐿 → ( 0s <s 𝑥 ↔ 0s <s 𝑥𝐿))
9796elrab 3692 . . . . . . . . . . . . . . . . 17 (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ↔ (𝑥𝐿 ∈ ( L ‘𝐴) ∧ 0s <s 𝑥𝐿))
9897simprbi 496 . . . . . . . . . . . . . . . 16 (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → 0s <s 𝑥𝐿)
9986, 98syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 0s <s 𝑥𝐿)
10099sgt0ne0d 27880 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝐿 ≠ 0s )
101 breq2 5147 . . . . . . . . . . . . . . . . 17 (𝑥𝑂 = 𝑥𝐿 → ( 0s <s 𝑥𝑂 ↔ 0s <s 𝑥𝐿))
102 oveq1 7438 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑂 = 𝑥𝐿 → (𝑥𝑂 ·s 𝑦) = (𝑥𝐿 ·s 𝑦))
103102eqeq1d 2739 . . . . . . . . . . . . . . . . . 18 (𝑥𝑂 = 𝑥𝐿 → ((𝑥𝑂 ·s 𝑦) = 1s ↔ (𝑥𝐿 ·s 𝑦) = 1s ))
104103rexbidv 3179 . . . . . . . . . . . . . . . . 17 (𝑥𝑂 = 𝑥𝐿 → (∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ↔ ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s ))
105101, 104imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑥𝑂 = 𝑥𝐿 → (( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ) ↔ ( 0s <s 𝑥𝐿 → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s )))
10672adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
107 elun1 4182 . . . . . . . . . . . . . . . . 17 (𝑥𝐿 ∈ ( L ‘𝐴) → 𝑥𝐿 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
10887, 107syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝐿 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
109105, 106, 108rspcdva 3623 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 0s <s 𝑥𝐿 → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s ))
11099, 109mpd 15 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s )
11195, 88, 100, 110divsclwd 28221 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) ∈ No )
112 eleq1 2829 . . . . . . . . . . . . 13 (𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) → (𝑎 No ↔ (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) ∈ No ))
113111, 112syl5ibrcom 247 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) → 𝑎 No ))
114113rexlimdvva 3213 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) → 𝑎 No ))
115114abssdv 4068 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)} ⊆ No )
11682, 115unssd 4192 . . . . . . . . 9 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}) ⊆ No )
11740, 116unssd 4192 . . . . . . . 8 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → ((𝐿𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})) ⊆ No )
11839, 117eqsstrd 4018 . . . . . . 7 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (𝐿‘suc 𝑗) ⊆ No )
11925, 26, 27precsexlem5 28235 . . . . . . . . 9 (𝑗 ∈ ω → (𝑅‘suc 𝑗) = ((𝑅𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
1201193ad2ant2 1135 . . . . . . . 8 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (𝑅‘suc 𝑗) = ((𝑅𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
121 simp3r 1203 . . . . . . . . 9 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (𝑅𝑗) ⊆ No )
12241a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 1s No )
123 simprl 771 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})
12485, 123sselid 3981 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝐿 ∈ ( L ‘𝐴))
12584, 124sselid 3981 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝐿 No )
12647adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝐴 No )
127125, 126subscld 28093 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝑥𝐿 -s 𝐴) ∈ No )
128 simpl3l 1229 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐿𝑗) ⊆ No )
129 simprr 773 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑦𝐿 ∈ (𝐿𝑗))
130128, 129sseldd 3984 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑦𝐿 No )
131127, 130mulscld 28161 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿) ∈ No )
132122, 131addscld 28013 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) ∈ No )
133123, 98syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 0s <s 𝑥𝐿)
134133sgt0ne0d 27880 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝐿 ≠ 0s )
13572adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
136124, 107syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝐿 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
137105, 135, 136rspcdva 3623 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( 0s <s 𝑥𝐿 → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s ))
138133, 137mpd 15 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s )
139132, 125, 134, 138divsclwd 28221 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ∈ No )
140 eleq1 2829 . . . . . . . . . . . . 13 (𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) → (𝑎 No ↔ (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ∈ No ))
141139, 140syl5ibrcom 247 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) → 𝑎 No ))
142141rexlimdvva 3213 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) → 𝑎 No ))
143142abssdv 4068 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ⊆ No )
14441a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 1s No )
145 simprl 771 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝑅 ∈ ( R ‘𝐴))
14643, 145sselid 3981 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝑅 No )
14747adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝐴 No )
148146, 147subscld 28093 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑥𝑅 -s 𝐴) ∈ No )
149 simpl3r 1230 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑅𝑗) ⊆ No )
150 simprr 773 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑦𝑅 ∈ (𝑅𝑗))
151149, 150sseldd 3984 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑦𝑅 No )
152148, 151mulscld 28161 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅) ∈ No )
153144, 152addscld 28013 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) ∈ No )
15429a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 0s No )
15557adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 0s <s 𝐴)
156145, 62syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝐴 <s 𝑥𝑅)
157154, 147, 146, 155, 156slttrd 27804 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 0s <s 𝑥𝑅)
158157sgt0ne0d 27880 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝑅 ≠ 0s )
15972adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
160145, 74syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝑅 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
16170, 159, 160rspcdva 3623 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 0s <s 𝑥𝑅 → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s ))
162157, 161mpd 15 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s )
163153, 146, 158, 162divsclwd 28221 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) ∈ No )
164 eleq1 2829 . . . . . . . . . . . . 13 (𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) → (𝑎 No ↔ (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) ∈ No ))
165163, 164syl5ibrcom 247 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) → 𝑎 No ))
166165rexlimdvva 3213 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) → 𝑎 No ))
167166abssdv 4068 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)} ⊆ No )
168143, 167unssd 4192 . . . . . . . . 9 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}) ⊆ No )
169121, 168unssd 4192 . . . . . . . 8 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → ((𝑅𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})) ⊆ No )
170120, 169eqsstrd 4018 . . . . . . 7 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (𝑅‘suc 𝑗) ⊆ No )
171118, 170jca 511 . . . . . 6 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → ((𝐿‘suc 𝑗) ⊆ No ∧ (𝑅‘suc 𝑗) ⊆ No ))
1721713exp 1120 . . . . 5 (𝜑 → (𝑗 ∈ ω → (((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No ) → ((𝐿‘suc 𝑗) ⊆ No ∧ (𝑅‘suc 𝑗) ⊆ No ))))
173172com12 32 . . . 4 (𝑗 ∈ ω → (𝜑 → (((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No ) → ((𝐿‘suc 𝑗) ⊆ No ∧ (𝑅‘suc 𝑗) ⊆ No ))))
174173a2d 29 . . 3 (𝑗 ∈ ω → ((𝜑 → ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (𝜑 → ((𝐿‘suc 𝑗) ⊆ No ∧ (𝑅‘suc 𝑗) ⊆ No ))))
1756, 12, 18, 24, 37, 174finds 7918 . 2 (𝐼 ∈ ω → (𝜑 → ((𝐿𝐼) ⊆ No ∧ (𝑅𝐼) ⊆ No )))
176175impcom 407 1 ((𝜑𝐼 ∈ ω) → ((𝐿𝐼) ⊆ No ∧ (𝑅𝐼) ⊆ No ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  {cab 2714  wral 3061  wrex 3070  {crab 3436  Vcvv 3480  csb 3899  cun 3949  wss 3951  c0 4333  {csn 4626  cop 4632   class class class wbr 5143  cmpt 5225  ccom 5689  suc csuc 6386  cfv 6561  (class class class)co 7431  ωcom 7887  1st c1st 8012  2nd c2nd 8013  reccrdg 8449   No csur 27684   <s cslt 27685   bday cbday 27686   0s c0s 27867   1s c1s 27868   O cold 27882   L cleft 27884   R cright 27885   +s cadds 27992   -s csubs 28052   ·s cmuls 28132   /su cdivs 28213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-ot 4635  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-nadd 8704  df-no 27687  df-slt 27688  df-bday 27689  df-sle 27790  df-sslt 27826  df-scut 27828  df-0s 27869  df-1s 27870  df-made 27886  df-old 27887  df-left 27889  df-right 27890  df-norec 27971  df-norec2 27982  df-adds 27993  df-negs 28053  df-subs 28054  df-muls 28133  df-divs 28214
This theorem is referenced by:  precsexlem9  28239  precsexlem10  28240
  Copyright terms: Public domain W3C validator