MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  precsexlem8 Structured version   Visualization version   GIF version

Theorem precsexlem8 28123
Description: Lemma for surreal reciprocal. Show that the left and right functions give sets of surreals. (Contributed by Scott Fenton, 13-Mar-2025.)
Hypotheses
Ref Expression
precsexlem.1 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
precsexlem.2 𝐿 = (1st𝐹)
precsexlem.3 𝑅 = (2nd𝐹)
precsexlem.4 (𝜑𝐴 No )
precsexlem.5 (𝜑 → 0s <s 𝐴)
precsexlem.6 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
Assertion
Ref Expression
precsexlem8 ((𝜑𝐼 ∈ ω) → ((𝐿𝐼) ⊆ No ∧ (𝑅𝐼) ⊆ No ))
Distinct variable groups:   𝐴,𝑎,𝑙,𝑝,𝑟,𝑥,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦,𝑦𝐿,𝑦𝑅   𝐹,𝑙,𝑝   𝐿,𝑎,𝑙,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝑅,𝑎,𝑙,𝑟,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝜑,𝑎,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑟,𝑝,𝑙,𝑥𝑂)   𝑅(𝑥,𝑦,𝑝,𝑥𝑂)   𝐹(𝑥,𝑦,𝑟,𝑎,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐼(𝑥,𝑦,𝑟,𝑝,𝑎,𝑙,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐿(𝑥,𝑦,𝑟,𝑝,𝑥𝑂)

Proof of Theorem precsexlem8
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6861 . . . . . 6 (𝑖 = ∅ → (𝐿𝑖) = (𝐿‘∅))
21sseq1d 3981 . . . . 5 (𝑖 = ∅ → ((𝐿𝑖) ⊆ No ↔ (𝐿‘∅) ⊆ No ))
3 fveq2 6861 . . . . . 6 (𝑖 = ∅ → (𝑅𝑖) = (𝑅‘∅))
43sseq1d 3981 . . . . 5 (𝑖 = ∅ → ((𝑅𝑖) ⊆ No ↔ (𝑅‘∅) ⊆ No ))
52, 4anbi12d 632 . . . 4 (𝑖 = ∅ → (((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No ) ↔ ((𝐿‘∅) ⊆ No ∧ (𝑅‘∅) ⊆ No )))
65imbi2d 340 . . 3 (𝑖 = ∅ → ((𝜑 → ((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No )) ↔ (𝜑 → ((𝐿‘∅) ⊆ No ∧ (𝑅‘∅) ⊆ No ))))
7 fveq2 6861 . . . . . 6 (𝑖 = 𝑗 → (𝐿𝑖) = (𝐿𝑗))
87sseq1d 3981 . . . . 5 (𝑖 = 𝑗 → ((𝐿𝑖) ⊆ No ↔ (𝐿𝑗) ⊆ No ))
9 fveq2 6861 . . . . . 6 (𝑖 = 𝑗 → (𝑅𝑖) = (𝑅𝑗))
109sseq1d 3981 . . . . 5 (𝑖 = 𝑗 → ((𝑅𝑖) ⊆ No ↔ (𝑅𝑗) ⊆ No ))
118, 10anbi12d 632 . . . 4 (𝑖 = 𝑗 → (((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No ) ↔ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )))
1211imbi2d 340 . . 3 (𝑖 = 𝑗 → ((𝜑 → ((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No )) ↔ (𝜑 → ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No ))))
13 fveq2 6861 . . . . . 6 (𝑖 = suc 𝑗 → (𝐿𝑖) = (𝐿‘suc 𝑗))
1413sseq1d 3981 . . . . 5 (𝑖 = suc 𝑗 → ((𝐿𝑖) ⊆ No ↔ (𝐿‘suc 𝑗) ⊆ No ))
15 fveq2 6861 . . . . . 6 (𝑖 = suc 𝑗 → (𝑅𝑖) = (𝑅‘suc 𝑗))
1615sseq1d 3981 . . . . 5 (𝑖 = suc 𝑗 → ((𝑅𝑖) ⊆ No ↔ (𝑅‘suc 𝑗) ⊆ No ))
1714, 16anbi12d 632 . . . 4 (𝑖 = suc 𝑗 → (((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No ) ↔ ((𝐿‘suc 𝑗) ⊆ No ∧ (𝑅‘suc 𝑗) ⊆ No )))
1817imbi2d 340 . . 3 (𝑖 = suc 𝑗 → ((𝜑 → ((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No )) ↔ (𝜑 → ((𝐿‘suc 𝑗) ⊆ No ∧ (𝑅‘suc 𝑗) ⊆ No ))))
19 fveq2 6861 . . . . . 6 (𝑖 = 𝐼 → (𝐿𝑖) = (𝐿𝐼))
2019sseq1d 3981 . . . . 5 (𝑖 = 𝐼 → ((𝐿𝑖) ⊆ No ↔ (𝐿𝐼) ⊆ No ))
21 fveq2 6861 . . . . . 6 (𝑖 = 𝐼 → (𝑅𝑖) = (𝑅𝐼))
2221sseq1d 3981 . . . . 5 (𝑖 = 𝐼 → ((𝑅𝑖) ⊆ No ↔ (𝑅𝐼) ⊆ No ))
2320, 22anbi12d 632 . . . 4 (𝑖 = 𝐼 → (((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No ) ↔ ((𝐿𝐼) ⊆ No ∧ (𝑅𝐼) ⊆ No )))
2423imbi2d 340 . . 3 (𝑖 = 𝐼 → ((𝜑 → ((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No )) ↔ (𝜑 → ((𝐿𝐼) ⊆ No ∧ (𝑅𝐼) ⊆ No ))))
25 precsexlem.1 . . . . . . 7 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
26 precsexlem.2 . . . . . . 7 𝐿 = (1st𝐹)
27 precsexlem.3 . . . . . . 7 𝑅 = (2nd𝐹)
2825, 26, 27precsexlem1 28116 . . . . . 6 (𝐿‘∅) = { 0s }
29 0sno 27745 . . . . . . 7 0s No
30 snssi 4775 . . . . . . 7 ( 0s No → { 0s } ⊆ No )
3129, 30ax-mp 5 . . . . . 6 { 0s } ⊆ No
3228, 31eqsstri 3996 . . . . 5 (𝐿‘∅) ⊆ No
3325, 26, 27precsexlem2 28117 . . . . . 6 (𝑅‘∅) = ∅
34 0ss 4366 . . . . . 6 ∅ ⊆ No
3533, 34eqsstri 3996 . . . . 5 (𝑅‘∅) ⊆ No
3632, 35pm3.2i 470 . . . 4 ((𝐿‘∅) ⊆ No ∧ (𝑅‘∅) ⊆ No )
3736a1i 11 . . 3 (𝜑 → ((𝐿‘∅) ⊆ No ∧ (𝑅‘∅) ⊆ No ))
3825, 26, 27precsexlem4 28119 . . . . . . . . 9 (𝑗 ∈ ω → (𝐿‘suc 𝑗) = ((𝐿𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
39383ad2ant2 1134 . . . . . . . 8 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (𝐿‘suc 𝑗) = ((𝐿𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
40 simp3l 1202 . . . . . . . . 9 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (𝐿𝑗) ⊆ No )
41 1sno 27746 . . . . . . . . . . . . . . . 16 1s No
4241a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 1s No )
43 rightssno 27800 . . . . . . . . . . . . . . . . . 18 ( R ‘𝐴) ⊆ No
44 simprl 770 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝑅 ∈ ( R ‘𝐴))
4543, 44sselid 3947 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝑅 No )
46 precsexlem.4 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 No )
47463ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → 𝐴 No )
4847adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝐴 No )
4945, 48subscld 27974 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝑥𝑅 -s 𝐴) ∈ No )
50 simpl3l 1229 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐿𝑗) ⊆ No )
51 simprr 772 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑦𝐿 ∈ (𝐿𝑗))
5250, 51sseldd 3950 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑦𝐿 No )
5349, 52mulscld 28045 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿) ∈ No )
5442, 53addscld 27894 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) ∈ No )
5529a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 0s No )
56 precsexlem.5 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0s <s 𝐴)
57563ad2ant1 1133 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → 0s <s 𝐴)
5857adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 0s <s 𝐴)
59 rightgt 27783 . . . . . . . . . . . . . . . . 17 (𝑥𝑅 ∈ ( R ‘𝐴) → 𝐴 <s 𝑥𝑅)
6044, 59syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝐴 <s 𝑥𝑅)
6155, 48, 45, 58, 60slttrd 27678 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 0s <s 𝑥𝑅)
6261sgt0ne0d 27755 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝑅 ≠ 0s )
63 breq2 5114 . . . . . . . . . . . . . . . . 17 (𝑥𝑂 = 𝑥𝑅 → ( 0s <s 𝑥𝑂 ↔ 0s <s 𝑥𝑅))
64 oveq1 7397 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑂 = 𝑥𝑅 → (𝑥𝑂 ·s 𝑦) = (𝑥𝑅 ·s 𝑦))
6564eqeq1d 2732 . . . . . . . . . . . . . . . . . 18 (𝑥𝑂 = 𝑥𝑅 → ((𝑥𝑂 ·s 𝑦) = 1s ↔ (𝑥𝑅 ·s 𝑦) = 1s ))
6665rexbidv 3158 . . . . . . . . . . . . . . . . 17 (𝑥𝑂 = 𝑥𝑅 → (∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ↔ ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s ))
6763, 66imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑥𝑂 = 𝑥𝑅 → (( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ) ↔ ( 0s <s 𝑥𝑅 → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s )))
68 precsexlem.6 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
69683ad2ant1 1133 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
7069adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
71 elun2 4149 . . . . . . . . . . . . . . . . 17 (𝑥𝑅 ∈ ( R ‘𝐴) → 𝑥𝑅 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
7244, 71syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝑅 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
7367, 70, 72rspcdva 3592 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( 0s <s 𝑥𝑅 → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s ))
7461, 73mpd 15 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s )
7554, 45, 62, 74divsclwd 28106 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ∈ No )
76 eleq1 2817 . . . . . . . . . . . . 13 (𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) → (𝑎 No ↔ (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ∈ No ))
7775, 76syl5ibrcom 247 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) → 𝑎 No ))
7877rexlimdvva 3195 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) → 𝑎 No ))
7978abssdv 4034 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ⊆ No )
8041a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 1s No )
81 leftssno 27799 . . . . . . . . . . . . . . . . . 18 ( L ‘𝐴) ⊆ No
82 ssrab2 4046 . . . . . . . . . . . . . . . . . . 19 {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ⊆ ( L ‘𝐴)
83 simprl 770 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})
8482, 83sselid 3947 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝐿 ∈ ( L ‘𝐴))
8581, 84sselid 3947 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝐿 No )
8647adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝐴 No )
8785, 86subscld 27974 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑥𝐿 -s 𝐴) ∈ No )
88 simpl3r 1230 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑅𝑗) ⊆ No )
89 simprr 772 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑦𝑅 ∈ (𝑅𝑗))
9088, 89sseldd 3950 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑦𝑅 No )
9187, 90mulscld 28045 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅) ∈ No )
9280, 91addscld 27894 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) ∈ No )
93 breq2 5114 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑥𝐿 → ( 0s <s 𝑥 ↔ 0s <s 𝑥𝐿))
9493elrab 3662 . . . . . . . . . . . . . . . . 17 (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ↔ (𝑥𝐿 ∈ ( L ‘𝐴) ∧ 0s <s 𝑥𝐿))
9594simprbi 496 . . . . . . . . . . . . . . . 16 (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → 0s <s 𝑥𝐿)
9683, 95syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 0s <s 𝑥𝐿)
9796sgt0ne0d 27755 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝐿 ≠ 0s )
98 breq2 5114 . . . . . . . . . . . . . . . . 17 (𝑥𝑂 = 𝑥𝐿 → ( 0s <s 𝑥𝑂 ↔ 0s <s 𝑥𝐿))
99 oveq1 7397 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑂 = 𝑥𝐿 → (𝑥𝑂 ·s 𝑦) = (𝑥𝐿 ·s 𝑦))
10099eqeq1d 2732 . . . . . . . . . . . . . . . . . 18 (𝑥𝑂 = 𝑥𝐿 → ((𝑥𝑂 ·s 𝑦) = 1s ↔ (𝑥𝐿 ·s 𝑦) = 1s ))
101100rexbidv 3158 . . . . . . . . . . . . . . . . 17 (𝑥𝑂 = 𝑥𝐿 → (∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ↔ ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s ))
10298, 101imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑥𝑂 = 𝑥𝐿 → (( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ) ↔ ( 0s <s 𝑥𝐿 → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s )))
10369adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
104 elun1 4148 . . . . . . . . . . . . . . . . 17 (𝑥𝐿 ∈ ( L ‘𝐴) → 𝑥𝐿 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
10584, 104syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝐿 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
106102, 103, 105rspcdva 3592 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 0s <s 𝑥𝐿 → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s ))
10796, 106mpd 15 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s )
10892, 85, 97, 107divsclwd 28106 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) ∈ No )
109 eleq1 2817 . . . . . . . . . . . . 13 (𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) → (𝑎 No ↔ (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) ∈ No ))
110108, 109syl5ibrcom 247 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) → 𝑎 No ))
111110rexlimdvva 3195 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) → 𝑎 No ))
112111abssdv 4034 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)} ⊆ No )
11379, 112unssd 4158 . . . . . . . . 9 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}) ⊆ No )
11440, 113unssd 4158 . . . . . . . 8 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → ((𝐿𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})) ⊆ No )
11539, 114eqsstrd 3984 . . . . . . 7 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (𝐿‘suc 𝑗) ⊆ No )
11625, 26, 27precsexlem5 28120 . . . . . . . . 9 (𝑗 ∈ ω → (𝑅‘suc 𝑗) = ((𝑅𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
1171163ad2ant2 1134 . . . . . . . 8 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (𝑅‘suc 𝑗) = ((𝑅𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
118 simp3r 1203 . . . . . . . . 9 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (𝑅𝑗) ⊆ No )
11941a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 1s No )
120 simprl 770 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})
12182, 120sselid 3947 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝐿 ∈ ( L ‘𝐴))
12281, 121sselid 3947 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝐿 No )
12347adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝐴 No )
124122, 123subscld 27974 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝑥𝐿 -s 𝐴) ∈ No )
125 simpl3l 1229 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐿𝑗) ⊆ No )
126 simprr 772 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑦𝐿 ∈ (𝐿𝑗))
127125, 126sseldd 3950 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑦𝐿 No )
128124, 127mulscld 28045 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿) ∈ No )
129119, 128addscld 27894 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) ∈ No )
130120, 95syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 0s <s 𝑥𝐿)
131130sgt0ne0d 27755 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝐿 ≠ 0s )
13269adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
133121, 104syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝐿 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
134102, 132, 133rspcdva 3592 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( 0s <s 𝑥𝐿 → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s ))
135130, 134mpd 15 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s )
136129, 122, 131, 135divsclwd 28106 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ∈ No )
137 eleq1 2817 . . . . . . . . . . . . 13 (𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) → (𝑎 No ↔ (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ∈ No ))
138136, 137syl5ibrcom 247 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) → 𝑎 No ))
139138rexlimdvva 3195 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) → 𝑎 No ))
140139abssdv 4034 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ⊆ No )
14141a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 1s No )
142 simprl 770 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝑅 ∈ ( R ‘𝐴))
14343, 142sselid 3947 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝑅 No )
14447adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝐴 No )
145143, 144subscld 27974 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑥𝑅 -s 𝐴) ∈ No )
146 simpl3r 1230 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑅𝑗) ⊆ No )
147 simprr 772 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑦𝑅 ∈ (𝑅𝑗))
148146, 147sseldd 3950 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑦𝑅 No )
149145, 148mulscld 28045 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅) ∈ No )
150141, 149addscld 27894 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) ∈ No )
15129a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 0s No )
15257adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 0s <s 𝐴)
153142, 59syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝐴 <s 𝑥𝑅)
154151, 144, 143, 152, 153slttrd 27678 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 0s <s 𝑥𝑅)
155154sgt0ne0d 27755 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝑅 ≠ 0s )
15669adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
157142, 71syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝑅 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
15867, 156, 157rspcdva 3592 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 0s <s 𝑥𝑅 → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s ))
159154, 158mpd 15 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s )
160150, 143, 155, 159divsclwd 28106 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) ∈ No )
161 eleq1 2817 . . . . . . . . . . . . 13 (𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) → (𝑎 No ↔ (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) ∈ No ))
162160, 161syl5ibrcom 247 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) → 𝑎 No ))
163162rexlimdvva 3195 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) → 𝑎 No ))
164163abssdv 4034 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)} ⊆ No )
165140, 164unssd 4158 . . . . . . . . 9 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}) ⊆ No )
166118, 165unssd 4158 . . . . . . . 8 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → ((𝑅𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})) ⊆ No )
167117, 166eqsstrd 3984 . . . . . . 7 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (𝑅‘suc 𝑗) ⊆ No )
168115, 167jca 511 . . . . . 6 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → ((𝐿‘suc 𝑗) ⊆ No ∧ (𝑅‘suc 𝑗) ⊆ No ))
1691683exp 1119 . . . . 5 (𝜑 → (𝑗 ∈ ω → (((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No ) → ((𝐿‘suc 𝑗) ⊆ No ∧ (𝑅‘suc 𝑗) ⊆ No ))))
170169com12 32 . . . 4 (𝑗 ∈ ω → (𝜑 → (((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No ) → ((𝐿‘suc 𝑗) ⊆ No ∧ (𝑅‘suc 𝑗) ⊆ No ))))
171170a2d 29 . . 3 (𝑗 ∈ ω → ((𝜑 → ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (𝜑 → ((𝐿‘suc 𝑗) ⊆ No ∧ (𝑅‘suc 𝑗) ⊆ No ))))
1726, 12, 18, 24, 37, 171finds 7875 . 2 (𝐼 ∈ ω → (𝜑 → ((𝐿𝐼) ⊆ No ∧ (𝑅𝐼) ⊆ No )))
173172impcom 407 1 ((𝜑𝐼 ∈ ω) → ((𝐿𝐼) ⊆ No ∧ (𝑅𝐼) ⊆ No ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2708  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  csb 3865  cun 3915  wss 3917  c0 4299  {csn 4592  cop 4598   class class class wbr 5110  cmpt 5191  ccom 5645  suc csuc 6337  cfv 6514  (class class class)co 7390  ωcom 7845  1st c1st 7969  2nd c2nd 7970  reccrdg 8380   No csur 27558   <s cslt 27559   0s c0s 27741   1s c1s 27742   L cleft 27760   R cright 27761   +s cadds 27873   -s csubs 27933   ·s cmuls 28016   /su cdivs 28097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-nadd 8633  df-no 27561  df-slt 27562  df-bday 27563  df-sle 27664  df-sslt 27700  df-scut 27702  df-0s 27743  df-1s 27744  df-made 27762  df-old 27763  df-left 27765  df-right 27766  df-norec 27852  df-norec2 27863  df-adds 27874  df-negs 27934  df-subs 27935  df-muls 28017  df-divs 28098
This theorem is referenced by:  precsexlem9  28124  precsexlem10  28125
  Copyright terms: Public domain W3C validator