MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  precsexlem8 Structured version   Visualization version   GIF version

Theorem precsexlem8 28158
Description: Lemma for surreal reciprocal. Show that the left and right functions give sets of surreals. (Contributed by Scott Fenton, 13-Mar-2025.)
Hypotheses
Ref Expression
precsexlem.1 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
precsexlem.2 𝐿 = (1st𝐹)
precsexlem.3 𝑅 = (2nd𝐹)
precsexlem.4 (𝜑𝐴 No )
precsexlem.5 (𝜑 → 0s <s 𝐴)
precsexlem.6 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
Assertion
Ref Expression
precsexlem8 ((𝜑𝐼 ∈ ω) → ((𝐿𝐼) ⊆ No ∧ (𝑅𝐼) ⊆ No ))
Distinct variable groups:   𝐴,𝑎,𝑙,𝑝,𝑟,𝑥,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦,𝑦𝐿,𝑦𝑅   𝐹,𝑙,𝑝   𝐿,𝑎,𝑙,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝑅,𝑎,𝑙,𝑟,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝜑,𝑎,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑟,𝑝,𝑙,𝑥𝑂)   𝑅(𝑥,𝑦,𝑝,𝑥𝑂)   𝐹(𝑥,𝑦,𝑟,𝑎,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐼(𝑥,𝑦,𝑟,𝑝,𝑎,𝑙,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐿(𝑥,𝑦,𝑟,𝑝,𝑥𝑂)

Proof of Theorem precsexlem8
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6841 . . . . . 6 (𝑖 = ∅ → (𝐿𝑖) = (𝐿‘∅))
21sseq1d 3975 . . . . 5 (𝑖 = ∅ → ((𝐿𝑖) ⊆ No ↔ (𝐿‘∅) ⊆ No ))
3 fveq2 6841 . . . . . 6 (𝑖 = ∅ → (𝑅𝑖) = (𝑅‘∅))
43sseq1d 3975 . . . . 5 (𝑖 = ∅ → ((𝑅𝑖) ⊆ No ↔ (𝑅‘∅) ⊆ No ))
52, 4anbi12d 632 . . . 4 (𝑖 = ∅ → (((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No ) ↔ ((𝐿‘∅) ⊆ No ∧ (𝑅‘∅) ⊆ No )))
65imbi2d 340 . . 3 (𝑖 = ∅ → ((𝜑 → ((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No )) ↔ (𝜑 → ((𝐿‘∅) ⊆ No ∧ (𝑅‘∅) ⊆ No ))))
7 fveq2 6841 . . . . . 6 (𝑖 = 𝑗 → (𝐿𝑖) = (𝐿𝑗))
87sseq1d 3975 . . . . 5 (𝑖 = 𝑗 → ((𝐿𝑖) ⊆ No ↔ (𝐿𝑗) ⊆ No ))
9 fveq2 6841 . . . . . 6 (𝑖 = 𝑗 → (𝑅𝑖) = (𝑅𝑗))
109sseq1d 3975 . . . . 5 (𝑖 = 𝑗 → ((𝑅𝑖) ⊆ No ↔ (𝑅𝑗) ⊆ No ))
118, 10anbi12d 632 . . . 4 (𝑖 = 𝑗 → (((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No ) ↔ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )))
1211imbi2d 340 . . 3 (𝑖 = 𝑗 → ((𝜑 → ((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No )) ↔ (𝜑 → ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No ))))
13 fveq2 6841 . . . . . 6 (𝑖 = suc 𝑗 → (𝐿𝑖) = (𝐿‘suc 𝑗))
1413sseq1d 3975 . . . . 5 (𝑖 = suc 𝑗 → ((𝐿𝑖) ⊆ No ↔ (𝐿‘suc 𝑗) ⊆ No ))
15 fveq2 6841 . . . . . 6 (𝑖 = suc 𝑗 → (𝑅𝑖) = (𝑅‘suc 𝑗))
1615sseq1d 3975 . . . . 5 (𝑖 = suc 𝑗 → ((𝑅𝑖) ⊆ No ↔ (𝑅‘suc 𝑗) ⊆ No ))
1714, 16anbi12d 632 . . . 4 (𝑖 = suc 𝑗 → (((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No ) ↔ ((𝐿‘suc 𝑗) ⊆ No ∧ (𝑅‘suc 𝑗) ⊆ No )))
1817imbi2d 340 . . 3 (𝑖 = suc 𝑗 → ((𝜑 → ((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No )) ↔ (𝜑 → ((𝐿‘suc 𝑗) ⊆ No ∧ (𝑅‘suc 𝑗) ⊆ No ))))
19 fveq2 6841 . . . . . 6 (𝑖 = 𝐼 → (𝐿𝑖) = (𝐿𝐼))
2019sseq1d 3975 . . . . 5 (𝑖 = 𝐼 → ((𝐿𝑖) ⊆ No ↔ (𝐿𝐼) ⊆ No ))
21 fveq2 6841 . . . . . 6 (𝑖 = 𝐼 → (𝑅𝑖) = (𝑅𝐼))
2221sseq1d 3975 . . . . 5 (𝑖 = 𝐼 → ((𝑅𝑖) ⊆ No ↔ (𝑅𝐼) ⊆ No ))
2320, 22anbi12d 632 . . . 4 (𝑖 = 𝐼 → (((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No ) ↔ ((𝐿𝐼) ⊆ No ∧ (𝑅𝐼) ⊆ No )))
2423imbi2d 340 . . 3 (𝑖 = 𝐼 → ((𝜑 → ((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No )) ↔ (𝜑 → ((𝐿𝐼) ⊆ No ∧ (𝑅𝐼) ⊆ No ))))
25 precsexlem.1 . . . . . . 7 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
26 precsexlem.2 . . . . . . 7 𝐿 = (1st𝐹)
27 precsexlem.3 . . . . . . 7 𝑅 = (2nd𝐹)
2825, 26, 27precsexlem1 28151 . . . . . 6 (𝐿‘∅) = { 0s }
29 0sno 27777 . . . . . . 7 0s No
30 snssi 4768 . . . . . . 7 ( 0s No → { 0s } ⊆ No )
3129, 30ax-mp 5 . . . . . 6 { 0s } ⊆ No
3228, 31eqsstri 3990 . . . . 5 (𝐿‘∅) ⊆ No
3325, 26, 27precsexlem2 28152 . . . . . 6 (𝑅‘∅) = ∅
34 0ss 4359 . . . . . 6 ∅ ⊆ No
3533, 34eqsstri 3990 . . . . 5 (𝑅‘∅) ⊆ No
3632, 35pm3.2i 470 . . . 4 ((𝐿‘∅) ⊆ No ∧ (𝑅‘∅) ⊆ No )
3736a1i 11 . . 3 (𝜑 → ((𝐿‘∅) ⊆ No ∧ (𝑅‘∅) ⊆ No ))
3825, 26, 27precsexlem4 28154 . . . . . . . . 9 (𝑗 ∈ ω → (𝐿‘suc 𝑗) = ((𝐿𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
39383ad2ant2 1134 . . . . . . . 8 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (𝐿‘suc 𝑗) = ((𝐿𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
40 simp3l 1202 . . . . . . . . 9 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (𝐿𝑗) ⊆ No )
41 1sno 27778 . . . . . . . . . . . . . . . 16 1s No
4241a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 1s No )
43 rightssno 27833 . . . . . . . . . . . . . . . . . 18 ( R ‘𝐴) ⊆ No
44 simprl 770 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝑅 ∈ ( R ‘𝐴))
4543, 44sselid 3941 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝑅 No )
46 precsexlem.4 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 No )
47463ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → 𝐴 No )
4847adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝐴 No )
4945, 48subscld 28009 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝑥𝑅 -s 𝐴) ∈ No )
50 simpl3l 1229 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐿𝑗) ⊆ No )
51 simprr 772 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑦𝐿 ∈ (𝐿𝑗))
5250, 51sseldd 3944 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑦𝐿 No )
5349, 52mulscld 28080 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿) ∈ No )
5442, 53addscld 27929 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) ∈ No )
5529a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 0s No )
56 precsexlem.5 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0s <s 𝐴)
57563ad2ant1 1133 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → 0s <s 𝐴)
5857adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 0s <s 𝐴)
59 rightgt 27815 . . . . . . . . . . . . . . . . 17 (𝑥𝑅 ∈ ( R ‘𝐴) → 𝐴 <s 𝑥𝑅)
6044, 59syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝐴 <s 𝑥𝑅)
6155, 48, 45, 58, 60slttrd 27706 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 0s <s 𝑥𝑅)
6261sgt0ne0d 27787 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝑅 ≠ 0s )
63 breq2 5106 . . . . . . . . . . . . . . . . 17 (𝑥𝑂 = 𝑥𝑅 → ( 0s <s 𝑥𝑂 ↔ 0s <s 𝑥𝑅))
64 oveq1 7377 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑂 = 𝑥𝑅 → (𝑥𝑂 ·s 𝑦) = (𝑥𝑅 ·s 𝑦))
6564eqeq1d 2731 . . . . . . . . . . . . . . . . . 18 (𝑥𝑂 = 𝑥𝑅 → ((𝑥𝑂 ·s 𝑦) = 1s ↔ (𝑥𝑅 ·s 𝑦) = 1s ))
6665rexbidv 3157 . . . . . . . . . . . . . . . . 17 (𝑥𝑂 = 𝑥𝑅 → (∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ↔ ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s ))
6763, 66imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑥𝑂 = 𝑥𝑅 → (( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ) ↔ ( 0s <s 𝑥𝑅 → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s )))
68 precsexlem.6 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
69683ad2ant1 1133 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
7069adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
71 elun2 4142 . . . . . . . . . . . . . . . . 17 (𝑥𝑅 ∈ ( R ‘𝐴) → 𝑥𝑅 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
7244, 71syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝑅 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
7367, 70, 72rspcdva 3586 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( 0s <s 𝑥𝑅 → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s ))
7461, 73mpd 15 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s )
7554, 45, 62, 74divsclwd 28141 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ∈ No )
76 eleq1 2816 . . . . . . . . . . . . 13 (𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) → (𝑎 No ↔ (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ∈ No ))
7775, 76syl5ibrcom 247 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) → 𝑎 No ))
7877rexlimdvva 3192 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) → 𝑎 No ))
7978abssdv 4028 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ⊆ No )
8041a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 1s No )
81 leftssno 27832 . . . . . . . . . . . . . . . . . 18 ( L ‘𝐴) ⊆ No
82 ssrab2 4039 . . . . . . . . . . . . . . . . . . 19 {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ⊆ ( L ‘𝐴)
83 simprl 770 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})
8482, 83sselid 3941 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝐿 ∈ ( L ‘𝐴))
8581, 84sselid 3941 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝐿 No )
8647adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝐴 No )
8785, 86subscld 28009 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑥𝐿 -s 𝐴) ∈ No )
88 simpl3r 1230 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑅𝑗) ⊆ No )
89 simprr 772 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑦𝑅 ∈ (𝑅𝑗))
9088, 89sseldd 3944 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑦𝑅 No )
9187, 90mulscld 28080 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅) ∈ No )
9280, 91addscld 27929 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) ∈ No )
93 breq2 5106 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑥𝐿 → ( 0s <s 𝑥 ↔ 0s <s 𝑥𝐿))
9493elrab 3656 . . . . . . . . . . . . . . . . 17 (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ↔ (𝑥𝐿 ∈ ( L ‘𝐴) ∧ 0s <s 𝑥𝐿))
9594simprbi 496 . . . . . . . . . . . . . . . 16 (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → 0s <s 𝑥𝐿)
9683, 95syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 0s <s 𝑥𝐿)
9796sgt0ne0d 27787 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝐿 ≠ 0s )
98 breq2 5106 . . . . . . . . . . . . . . . . 17 (𝑥𝑂 = 𝑥𝐿 → ( 0s <s 𝑥𝑂 ↔ 0s <s 𝑥𝐿))
99 oveq1 7377 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑂 = 𝑥𝐿 → (𝑥𝑂 ·s 𝑦) = (𝑥𝐿 ·s 𝑦))
10099eqeq1d 2731 . . . . . . . . . . . . . . . . . 18 (𝑥𝑂 = 𝑥𝐿 → ((𝑥𝑂 ·s 𝑦) = 1s ↔ (𝑥𝐿 ·s 𝑦) = 1s ))
101100rexbidv 3157 . . . . . . . . . . . . . . . . 17 (𝑥𝑂 = 𝑥𝐿 → (∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ↔ ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s ))
10298, 101imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑥𝑂 = 𝑥𝐿 → (( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ) ↔ ( 0s <s 𝑥𝐿 → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s )))
10369adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
104 elun1 4141 . . . . . . . . . . . . . . . . 17 (𝑥𝐿 ∈ ( L ‘𝐴) → 𝑥𝐿 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
10584, 104syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝐿 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
106102, 103, 105rspcdva 3586 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 0s <s 𝑥𝐿 → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s ))
10796, 106mpd 15 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s )
10892, 85, 97, 107divsclwd 28141 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) ∈ No )
109 eleq1 2816 . . . . . . . . . . . . 13 (𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) → (𝑎 No ↔ (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) ∈ No ))
110108, 109syl5ibrcom 247 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) → 𝑎 No ))
111110rexlimdvva 3192 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) → 𝑎 No ))
112111abssdv 4028 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)} ⊆ No )
11379, 112unssd 4151 . . . . . . . . 9 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}) ⊆ No )
11440, 113unssd 4151 . . . . . . . 8 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → ((𝐿𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})) ⊆ No )
11539, 114eqsstrd 3978 . . . . . . 7 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (𝐿‘suc 𝑗) ⊆ No )
11625, 26, 27precsexlem5 28155 . . . . . . . . 9 (𝑗 ∈ ω → (𝑅‘suc 𝑗) = ((𝑅𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
1171163ad2ant2 1134 . . . . . . . 8 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (𝑅‘suc 𝑗) = ((𝑅𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
118 simp3r 1203 . . . . . . . . 9 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (𝑅𝑗) ⊆ No )
11941a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 1s No )
120 simprl 770 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})
12182, 120sselid 3941 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝐿 ∈ ( L ‘𝐴))
12281, 121sselid 3941 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝐿 No )
12347adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝐴 No )
124122, 123subscld 28009 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝑥𝐿 -s 𝐴) ∈ No )
125 simpl3l 1229 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐿𝑗) ⊆ No )
126 simprr 772 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑦𝐿 ∈ (𝐿𝑗))
127125, 126sseldd 3944 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑦𝐿 No )
128124, 127mulscld 28080 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿) ∈ No )
129119, 128addscld 27929 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) ∈ No )
130120, 95syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 0s <s 𝑥𝐿)
131130sgt0ne0d 27787 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝐿 ≠ 0s )
13269adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
133121, 104syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝐿 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
134102, 132, 133rspcdva 3586 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( 0s <s 𝑥𝐿 → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s ))
135130, 134mpd 15 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s )
136129, 122, 131, 135divsclwd 28141 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ∈ No )
137 eleq1 2816 . . . . . . . . . . . . 13 (𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) → (𝑎 No ↔ (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ∈ No ))
138136, 137syl5ibrcom 247 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) → 𝑎 No ))
139138rexlimdvva 3192 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) → 𝑎 No ))
140139abssdv 4028 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ⊆ No )
14141a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 1s No )
142 simprl 770 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝑅 ∈ ( R ‘𝐴))
14343, 142sselid 3941 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝑅 No )
14447adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝐴 No )
145143, 144subscld 28009 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑥𝑅 -s 𝐴) ∈ No )
146 simpl3r 1230 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑅𝑗) ⊆ No )
147 simprr 772 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑦𝑅 ∈ (𝑅𝑗))
148146, 147sseldd 3944 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑦𝑅 No )
149145, 148mulscld 28080 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅) ∈ No )
150141, 149addscld 27929 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) ∈ No )
15129a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 0s No )
15257adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 0s <s 𝐴)
153142, 59syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝐴 <s 𝑥𝑅)
154151, 144, 143, 152, 153slttrd 27706 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 0s <s 𝑥𝑅)
155154sgt0ne0d 27787 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝑅 ≠ 0s )
15669adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
157142, 71syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝑅 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
15867, 156, 157rspcdva 3586 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 0s <s 𝑥𝑅 → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s ))
159154, 158mpd 15 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s )
160150, 143, 155, 159divsclwd 28141 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) ∈ No )
161 eleq1 2816 . . . . . . . . . . . . 13 (𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) → (𝑎 No ↔ (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) ∈ No ))
162160, 161syl5ibrcom 247 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) → 𝑎 No ))
163162rexlimdvva 3192 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) → 𝑎 No ))
164163abssdv 4028 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)} ⊆ No )
165140, 164unssd 4151 . . . . . . . . 9 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}) ⊆ No )
166118, 165unssd 4151 . . . . . . . 8 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → ((𝑅𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})) ⊆ No )
167117, 166eqsstrd 3978 . . . . . . 7 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (𝑅‘suc 𝑗) ⊆ No )
168115, 167jca 511 . . . . . 6 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → ((𝐿‘suc 𝑗) ⊆ No ∧ (𝑅‘suc 𝑗) ⊆ No ))
1691683exp 1119 . . . . 5 (𝜑 → (𝑗 ∈ ω → (((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No ) → ((𝐿‘suc 𝑗) ⊆ No ∧ (𝑅‘suc 𝑗) ⊆ No ))))
170169com12 32 . . . 4 (𝑗 ∈ ω → (𝜑 → (((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No ) → ((𝐿‘suc 𝑗) ⊆ No ∧ (𝑅‘suc 𝑗) ⊆ No ))))
171170a2d 29 . . 3 (𝑗 ∈ ω → ((𝜑 → ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (𝜑 → ((𝐿‘suc 𝑗) ⊆ No ∧ (𝑅‘suc 𝑗) ⊆ No ))))
1726, 12, 18, 24, 37, 171finds 7853 . 2 (𝐼 ∈ ω → (𝜑 → ((𝐿𝐼) ⊆ No ∧ (𝑅𝐼) ⊆ No )))
173172impcom 407 1 ((𝜑𝐼 ∈ ω) → ((𝐿𝐼) ⊆ No ∧ (𝑅𝐼) ⊆ No ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  {crab 3402  Vcvv 3444  csb 3859  cun 3909  wss 3911  c0 4292  {csn 4585  cop 4591   class class class wbr 5102  cmpt 5183  ccom 5635  suc csuc 6323  cfv 6500  (class class class)co 7370  ωcom 7823  1st c1st 7946  2nd c2nd 7947  reccrdg 8355   No csur 27586   <s cslt 27587   0s c0s 27773   1s c1s 27774   L cleft 27792   R cright 27793   +s cadds 27908   -s csubs 27968   ·s cmuls 28051   /su cdivs 28132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7692
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6263  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6453  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7327  df-ov 7373  df-oprab 7374  df-mpo 7375  df-om 7824  df-1st 7948  df-2nd 7949  df-frecs 8238  df-wrecs 8269  df-recs 8318  df-rdg 8356  df-1o 8412  df-2o 8413  df-nadd 8608  df-no 27589  df-slt 27590  df-bday 27591  df-sle 27692  df-sslt 27729  df-scut 27731  df-0s 27775  df-1s 27776  df-made 27794  df-old 27795  df-left 27797  df-right 27798  df-norec 27887  df-norec2 27898  df-adds 27909  df-negs 27969  df-subs 27970  df-muls 28052  df-divs 28133
This theorem is referenced by:  precsexlem9  28159  precsexlem10  28160
  Copyright terms: Public domain W3C validator