Step | Hyp | Ref
| Expression |
1 | | fveq2 6891 |
. . . . . 6
⊢ (𝑖 = ∅ → (𝐿‘𝑖) = (𝐿‘∅)) |
2 | 1 | sseq1d 4013 |
. . . . 5
⊢ (𝑖 = ∅ → ((𝐿‘𝑖) ⊆ No
↔ (𝐿‘∅)
⊆ No )) |
3 | | fveq2 6891 |
. . . . . 6
⊢ (𝑖 = ∅ → (𝑅‘𝑖) = (𝑅‘∅)) |
4 | 3 | sseq1d 4013 |
. . . . 5
⊢ (𝑖 = ∅ → ((𝑅‘𝑖) ⊆ No
↔ (𝑅‘∅)
⊆ No )) |
5 | 2, 4 | anbi12d 630 |
. . . 4
⊢ (𝑖 = ∅ → (((𝐿‘𝑖) ⊆ No
∧ (𝑅‘𝑖) ⊆
No ) ↔ ((𝐿‘∅) ⊆ No ∧ (𝑅‘∅) ⊆ No ))) |
6 | 5 | imbi2d 340 |
. . 3
⊢ (𝑖 = ∅ → ((𝜑 → ((𝐿‘𝑖) ⊆ No
∧ (𝑅‘𝑖) ⊆
No )) ↔ (𝜑 →
((𝐿‘∅) ⊆
No ∧ (𝑅‘∅) ⊆ No )))) |
7 | | fveq2 6891 |
. . . . . 6
⊢ (𝑖 = 𝑗 → (𝐿‘𝑖) = (𝐿‘𝑗)) |
8 | 7 | sseq1d 4013 |
. . . . 5
⊢ (𝑖 = 𝑗 → ((𝐿‘𝑖) ⊆ No
↔ (𝐿‘𝑗) ⊆
No )) |
9 | | fveq2 6891 |
. . . . . 6
⊢ (𝑖 = 𝑗 → (𝑅‘𝑖) = (𝑅‘𝑗)) |
10 | 9 | sseq1d 4013 |
. . . . 5
⊢ (𝑖 = 𝑗 → ((𝑅‘𝑖) ⊆ No
↔ (𝑅‘𝑗) ⊆
No )) |
11 | 8, 10 | anbi12d 630 |
. . . 4
⊢ (𝑖 = 𝑗 → (((𝐿‘𝑖) ⊆ No
∧ (𝑅‘𝑖) ⊆
No ) ↔ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No ))) |
12 | 11 | imbi2d 340 |
. . 3
⊢ (𝑖 = 𝑗 → ((𝜑 → ((𝐿‘𝑖) ⊆ No
∧ (𝑅‘𝑖) ⊆
No )) ↔ (𝜑 →
((𝐿‘𝑗) ⊆
No ∧ (𝑅‘𝑗) ⊆ No
)))) |
13 | | fveq2 6891 |
. . . . . 6
⊢ (𝑖 = suc 𝑗 → (𝐿‘𝑖) = (𝐿‘suc 𝑗)) |
14 | 13 | sseq1d 4013 |
. . . . 5
⊢ (𝑖 = suc 𝑗 → ((𝐿‘𝑖) ⊆ No
↔ (𝐿‘suc 𝑗) ⊆
No )) |
15 | | fveq2 6891 |
. . . . . 6
⊢ (𝑖 = suc 𝑗 → (𝑅‘𝑖) = (𝑅‘suc 𝑗)) |
16 | 15 | sseq1d 4013 |
. . . . 5
⊢ (𝑖 = suc 𝑗 → ((𝑅‘𝑖) ⊆ No
↔ (𝑅‘suc 𝑗) ⊆
No )) |
17 | 14, 16 | anbi12d 630 |
. . . 4
⊢ (𝑖 = suc 𝑗 → (((𝐿‘𝑖) ⊆ No
∧ (𝑅‘𝑖) ⊆
No ) ↔ ((𝐿‘suc 𝑗) ⊆ No
∧ (𝑅‘suc 𝑗) ⊆
No ))) |
18 | 17 | imbi2d 340 |
. . 3
⊢ (𝑖 = suc 𝑗 → ((𝜑 → ((𝐿‘𝑖) ⊆ No
∧ (𝑅‘𝑖) ⊆
No )) ↔ (𝜑 →
((𝐿‘suc 𝑗) ⊆
No ∧ (𝑅‘suc 𝑗) ⊆ No
)))) |
19 | | fveq2 6891 |
. . . . . 6
⊢ (𝑖 = 𝐼 → (𝐿‘𝑖) = (𝐿‘𝐼)) |
20 | 19 | sseq1d 4013 |
. . . . 5
⊢ (𝑖 = 𝐼 → ((𝐿‘𝑖) ⊆ No
↔ (𝐿‘𝐼) ⊆
No )) |
21 | | fveq2 6891 |
. . . . . 6
⊢ (𝑖 = 𝐼 → (𝑅‘𝑖) = (𝑅‘𝐼)) |
22 | 21 | sseq1d 4013 |
. . . . 5
⊢ (𝑖 = 𝐼 → ((𝑅‘𝑖) ⊆ No
↔ (𝑅‘𝐼) ⊆
No )) |
23 | 20, 22 | anbi12d 630 |
. . . 4
⊢ (𝑖 = 𝐼 → (((𝐿‘𝑖) ⊆ No
∧ (𝑅‘𝑖) ⊆
No ) ↔ ((𝐿‘𝐼) ⊆ No
∧ (𝑅‘𝐼) ⊆
No ))) |
24 | 23 | imbi2d 340 |
. . 3
⊢ (𝑖 = 𝐼 → ((𝜑 → ((𝐿‘𝑖) ⊆ No
∧ (𝑅‘𝑖) ⊆
No )) ↔ (𝜑 →
((𝐿‘𝐼) ⊆ No
∧ (𝑅‘𝐼) ⊆
No )))) |
25 | | precsexlem.1 |
. . . . . . 7
⊢ 𝐹 = rec((𝑝 ∈ V ↦
⦋(1st ‘𝑝) / 𝑙⦌⦋(2nd
‘𝑝) / 𝑟⦌〈(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})),
(𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ 𝑙 𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ 𝑟 𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))〉), 〈{
0s }, ∅〉) |
26 | | precsexlem.2 |
. . . . . . 7
⊢ 𝐿 = (1st ∘ 𝐹) |
27 | | precsexlem.3 |
. . . . . . 7
⊢ 𝑅 = (2nd ∘ 𝐹) |
28 | 25, 26, 27 | precsexlem1 28020 |
. . . . . 6
⊢ (𝐿‘∅) = {
0s } |
29 | | 0sno 27674 |
. . . . . . 7
⊢
0s ∈ No |
30 | | snssi 4811 |
. . . . . . 7
⊢ (
0s ∈ No → { 0s }
⊆ No ) |
31 | 29, 30 | ax-mp 5 |
. . . . . 6
⊢ {
0s } ⊆ No |
32 | 28, 31 | eqsstri 4016 |
. . . . 5
⊢ (𝐿‘∅) ⊆ No |
33 | 25, 26, 27 | precsexlem2 28021 |
. . . . . 6
⊢ (𝑅‘∅) =
∅ |
34 | | 0ss 4396 |
. . . . . 6
⊢ ∅
⊆ No |
35 | 33, 34 | eqsstri 4016 |
. . . . 5
⊢ (𝑅‘∅) ⊆ No |
36 | 32, 35 | pm3.2i 470 |
. . . 4
⊢ ((𝐿‘∅) ⊆ No ∧ (𝑅‘∅) ⊆ No ) |
37 | 36 | a1i 11 |
. . 3
⊢ (𝜑 → ((𝐿‘∅) ⊆ No ∧ (𝑅‘∅) ⊆ No )) |
38 | 25, 26, 27 | precsexlem4 28023 |
. . . . . . . . 9
⊢ (𝑗 ∈ ω → (𝐿‘suc 𝑗) = ((𝐿‘𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}))) |
39 | 38 | 3ad2ant2 1133 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) → (𝐿‘suc 𝑗) = ((𝐿‘𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}))) |
40 | | simp3l 1200 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) → (𝐿‘𝑗) ⊆ No
) |
41 | | 1sno 27675 |
. . . . . . . . . . . . . . . 16
⊢
1s ∈ No |
42 | 41 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 1s ∈ No ) |
43 | | rightssno 27723 |
. . . . . . . . . . . . . . . . . 18
⊢ ( R
‘𝐴) ⊆ No |
44 | | simprl 768 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 𝑥𝑅 ∈ ( R ‘𝐴)) |
45 | 43, 44 | sselid 3980 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 𝑥𝑅 ∈ No ) |
46 | | precsexlem.4 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐴 ∈ No
) |
47 | 46 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) → 𝐴
∈ No ) |
48 | 47 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 𝐴 ∈ No
) |
49 | 45, 48 | subscld 27888 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝑥𝑅 -s 𝐴) ∈
No ) |
50 | | simpl3l 1227 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝐿‘𝑗) ⊆ No
) |
51 | | simprr 770 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 𝑦𝐿 ∈ (𝐿‘𝑗)) |
52 | 50, 51 | sseldd 3983 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 𝑦𝐿 ∈ No ) |
53 | 49, 52 | mulscld 27950 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿) ∈
No ) |
54 | 42, 53 | addscld 27812 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ( 1s +s
((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) ∈ No ) |
55 | 29 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 0s ∈ No ) |
56 | | precsexlem.5 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 0s <s 𝐴) |
57 | 56 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) → 0s <s 𝐴) |
58 | 57 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 0s <s 𝐴) |
59 | | breq2 5152 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥𝑂 = 𝑥𝑅 →
(𝐴 <s 𝑥𝑂 ↔ 𝐴 <s 𝑥𝑅)) |
60 | | rightval 27706 |
. . . . . . . . . . . . . . . . . . 19
⊢ ( R
‘𝐴) = {𝑥𝑂 ∈ ( O
‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥𝑂} |
61 | 59, 60 | elrab2 3686 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥𝑅 ∈ ( R
‘𝐴) ↔ (𝑥𝑅 ∈ ( O
‘( bday ‘𝐴)) ∧ 𝐴 <s 𝑥𝑅)) |
62 | 61 | simprbi 496 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥𝑅 ∈ ( R
‘𝐴) → 𝐴 <s 𝑥𝑅) |
63 | 44, 62 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 𝐴 <s 𝑥𝑅) |
64 | 55, 48, 45, 58, 63 | slttrd 27607 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 0s <s 𝑥𝑅) |
65 | 64 | sgt0ne0d 27683 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 𝑥𝑅 ≠ 0s
) |
66 | | breq2 5152 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥𝑂 = 𝑥𝑅 → (
0s <s 𝑥𝑂 ↔ 0s
<s 𝑥𝑅)) |
67 | | oveq1 7419 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥𝑂 = 𝑥𝑅 →
(𝑥𝑂
·s 𝑦) =
(𝑥𝑅
·s 𝑦)) |
68 | 67 | eqeq1d 2733 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥𝑂 = 𝑥𝑅 →
((𝑥𝑂
·s 𝑦) =
1s ↔ (𝑥𝑅 ·s
𝑦) = 1s
)) |
69 | 68 | rexbidv 3177 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥𝑂 = 𝑥𝑅 →
(∃𝑦 ∈ No (𝑥𝑂 ·s
𝑦) = 1s ↔
∃𝑦 ∈ No (𝑥𝑅 ·s
𝑦) = 1s
)) |
70 | 66, 69 | imbi12d 344 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥𝑂 = 𝑥𝑅 → ((
0s <s 𝑥𝑂 → ∃𝑦 ∈
No (𝑥𝑂 ·s
𝑦) = 1s ) ↔
( 0s <s 𝑥𝑅 → ∃𝑦 ∈
No (𝑥𝑅 ·s
𝑦) = 1s
))) |
71 | | precsexlem.6 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 →
∃𝑦 ∈ No (𝑥𝑂 ·s
𝑦) = 1s
)) |
72 | 71 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 →
∃𝑦 ∈ No (𝑥𝑂 ·s
𝑦) = 1s
)) |
73 | 72 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 →
∃𝑦 ∈ No (𝑥𝑂 ·s
𝑦) = 1s
)) |
74 | | elun2 4177 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥𝑅 ∈ ( R
‘𝐴) → 𝑥𝑅 ∈ (( L
‘𝐴) ∪ ( R
‘𝐴))) |
75 | 44, 74 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 𝑥𝑅 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))) |
76 | 70, 73, 75 | rspcdva 3613 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ( 0s <s 𝑥𝑅 →
∃𝑦 ∈ No (𝑥𝑅 ·s
𝑦) = 1s
)) |
77 | 64, 76 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ∃𝑦 ∈ No
(𝑥𝑅
·s 𝑦) =
1s ) |
78 | 54, 45, 65, 77 | divsclwd 28010 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (( 1s +s
((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)
∈ No ) |
79 | | eleq1 2820 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝑅) → (𝑎 ∈
No ↔ (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝑅) ∈ No )) |
80 | 78, 79 | syl5ibrcom 246 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)
→ 𝑎 ∈ No )) |
81 | 80 | rexlimdvva 3210 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)
→ 𝑎 ∈ No )) |
82 | 81 | abssdv 4065 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) → {𝑎
∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
⊆ No ) |
83 | 41 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 1s ∈ No ) |
84 | | leftssno 27722 |
. . . . . . . . . . . . . . . . . 18
⊢ ( L
‘𝐴) ⊆ No |
85 | | ssrab2 4077 |
. . . . . . . . . . . . . . . . . . 19
⊢ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ⊆ ( L ‘𝐴) |
86 | | simprl 768 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) |
87 | 85, 86 | sselid 3980 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 𝑥𝐿 ∈ ( L ‘𝐴)) |
88 | 84, 87 | sselid 3980 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 𝑥𝐿 ∈ No ) |
89 | 47 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 𝐴 ∈ No
) |
90 | 88, 89 | subscld 27888 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝑥𝐿 -s 𝐴) ∈
No ) |
91 | | simpl3r 1228 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝑅‘𝑗) ⊆ No
) |
92 | | simprr 770 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 𝑦𝑅 ∈ (𝑅‘𝑗)) |
93 | 91, 92 | sseldd 3983 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 𝑦𝑅 ∈ No ) |
94 | 90, 93 | mulscld 27950 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅) ∈
No ) |
95 | 83, 94 | addscld 27812 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ( 1s +s
((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) ∈ No ) |
96 | | breq2 5152 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑥𝐿 → ( 0s
<s 𝑥 ↔
0s <s 𝑥𝐿)) |
97 | 96 | elrab 3683 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ↔ (𝑥𝐿 ∈ ( L
‘𝐴) ∧
0s <s 𝑥𝐿)) |
98 | 97 | simprbi 496 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥𝐿 ∈
{𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} → 0s
<s 𝑥𝐿) |
99 | 86, 98 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 0s <s 𝑥𝐿) |
100 | 99 | sgt0ne0d 27683 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 𝑥𝐿 ≠ 0s
) |
101 | | breq2 5152 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥𝑂 = 𝑥𝐿 → (
0s <s 𝑥𝑂 ↔ 0s
<s 𝑥𝐿)) |
102 | | oveq1 7419 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥𝑂 = 𝑥𝐿 →
(𝑥𝑂
·s 𝑦) =
(𝑥𝐿
·s 𝑦)) |
103 | 102 | eqeq1d 2733 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥𝑂 = 𝑥𝐿 →
((𝑥𝑂
·s 𝑦) =
1s ↔ (𝑥𝐿 ·s
𝑦) = 1s
)) |
104 | 103 | rexbidv 3177 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥𝑂 = 𝑥𝐿 →
(∃𝑦 ∈ No (𝑥𝑂 ·s
𝑦) = 1s ↔
∃𝑦 ∈ No (𝑥𝐿 ·s
𝑦) = 1s
)) |
105 | 101, 104 | imbi12d 344 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥𝑂 = 𝑥𝐿 → ((
0s <s 𝑥𝑂 → ∃𝑦 ∈
No (𝑥𝑂 ·s
𝑦) = 1s ) ↔
( 0s <s 𝑥𝐿 → ∃𝑦 ∈
No (𝑥𝐿 ·s
𝑦) = 1s
))) |
106 | 72 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 →
∃𝑦 ∈ No (𝑥𝑂 ·s
𝑦) = 1s
)) |
107 | | elun1 4176 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥𝐿 ∈ ( L
‘𝐴) → 𝑥𝐿 ∈ (( L
‘𝐴) ∪ ( R
‘𝐴))) |
108 | 87, 107 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 𝑥𝐿 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))) |
109 | 105, 106,
108 | rspcdva 3613 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ( 0s <s 𝑥𝐿 →
∃𝑦 ∈ No (𝑥𝐿 ·s
𝑦) = 1s
)) |
110 | 99, 109 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ∃𝑦 ∈ No
(𝑥𝐿
·s 𝑦) =
1s ) |
111 | 95, 88, 100, 110 | divsclwd 28010 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (( 1s +s
((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)
∈ No ) |
112 | | eleq1 2820 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝐿) → (𝑎 ∈
No ↔ (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝐿) ∈ No )) |
113 | 111, 112 | syl5ibrcom 246 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)
→ 𝑎 ∈ No )) |
114 | 113 | rexlimdvva 3210 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)
→ 𝑎 ∈ No )) |
115 | 114 | abssdv 4065 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) → {𝑎
∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}
⊆ No ) |
116 | 82, 115 | unssd 4186 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) → ({𝑎
∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)})
⊆ No ) |
117 | 40, 116 | unssd 4186 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) → ((𝐿‘𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝑅)}
∪ {𝑎 ∣
∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝐿)}))
⊆ No ) |
118 | 39, 117 | eqsstrd 4020 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) → (𝐿‘suc 𝑗) ⊆ No
) |
119 | 25, 26, 27 | precsexlem5 28024 |
. . . . . . . . 9
⊢ (𝑗 ∈ ω → (𝑅‘suc 𝑗) = ((𝑅‘𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))) |
120 | 119 | 3ad2ant2 1133 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) → (𝑅‘suc 𝑗) = ((𝑅‘𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))) |
121 | | simp3r 1201 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) → (𝑅‘𝑗) ⊆ No
) |
122 | 41 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 1s ∈ No ) |
123 | | simprl 768 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}) |
124 | 85, 123 | sselid 3980 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 𝑥𝐿 ∈ ( L ‘𝐴)) |
125 | 84, 124 | sselid 3980 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 𝑥𝐿 ∈ No ) |
126 | 47 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 𝐴 ∈ No
) |
127 | 125, 126 | subscld 27888 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝑥𝐿 -s 𝐴) ∈
No ) |
128 | | simpl3l 1227 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝐿‘𝑗) ⊆ No
) |
129 | | simprr 770 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 𝑦𝐿 ∈ (𝐿‘𝑗)) |
130 | 128, 129 | sseldd 3983 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 𝑦𝐿 ∈ No ) |
131 | 127, 130 | mulscld 27950 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿) ∈
No ) |
132 | 122, 131 | addscld 27812 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ( 1s +s
((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) ∈ No ) |
133 | 123, 98 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 0s <s 𝑥𝐿) |
134 | 133 | sgt0ne0d 27683 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 𝑥𝐿 ≠ 0s
) |
135 | 72 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 →
∃𝑦 ∈ No (𝑥𝑂 ·s
𝑦) = 1s
)) |
136 | 124, 107 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → 𝑥𝐿 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))) |
137 | 105, 135,
136 | rspcdva 3613 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ( 0s <s 𝑥𝐿 →
∃𝑦 ∈ No (𝑥𝐿 ·s
𝑦) = 1s
)) |
138 | 133, 137 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → ∃𝑦 ∈ No
(𝑥𝐿
·s 𝑦) =
1s ) |
139 | 132, 125,
134, 138 | divsclwd 28010 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (( 1s +s
((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)
∈ No ) |
140 | | eleq1 2820 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (( 1s
+s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝐿) → (𝑎 ∈
No ↔ (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿))
/su 𝑥𝐿) ∈ No )) |
141 | 139, 140 | syl5ibrcom 246 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥} ∧ 𝑦𝐿 ∈ (𝐿‘𝑗))) → (𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)
→ 𝑎 ∈ No )) |
142 | 141 | rexlimdvva 3210 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)
→ 𝑎 ∈ No )) |
143 | 142 | abssdv 4065 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) → {𝑎
∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
⊆ No ) |
144 | 41 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 1s ∈ No ) |
145 | | simprl 768 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 𝑥𝑅 ∈ ( R ‘𝐴)) |
146 | 43, 145 | sselid 3980 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 𝑥𝑅 ∈ No ) |
147 | 47 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 𝐴 ∈ No
) |
148 | 146, 147 | subscld 27888 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝑥𝑅 -s 𝐴) ∈
No ) |
149 | | simpl3r 1228 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝑅‘𝑗) ⊆ No
) |
150 | | simprr 770 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 𝑦𝑅 ∈ (𝑅‘𝑗)) |
151 | 149, 150 | sseldd 3983 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 𝑦𝑅 ∈ No ) |
152 | 148, 151 | mulscld 27950 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅) ∈
No ) |
153 | 144, 152 | addscld 27812 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ( 1s +s
((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) ∈ No ) |
154 | 29 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 0s ∈ No ) |
155 | 57 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 0s <s 𝐴) |
156 | 145, 62 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 𝐴 <s 𝑥𝑅) |
157 | 154, 147,
146, 155, 156 | slttrd 27607 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 0s <s 𝑥𝑅) |
158 | 157 | sgt0ne0d 27683 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 𝑥𝑅 ≠ 0s
) |
159 | 72 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 →
∃𝑦 ∈ No (𝑥𝑂 ·s
𝑦) = 1s
)) |
160 | 145, 74 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → 𝑥𝑅 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))) |
161 | 70, 159, 160 | rspcdva 3613 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ( 0s <s 𝑥𝑅 →
∃𝑦 ∈ No (𝑥𝑅 ·s
𝑦) = 1s
)) |
162 | 157, 161 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → ∃𝑦 ∈ No
(𝑥𝑅
·s 𝑦) =
1s ) |
163 | 153, 146,
158, 162 | divsclwd 28010 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (( 1s +s
((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)
∈ No ) |
164 | | eleq1 2820 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (( 1s
+s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝑅) → (𝑎 ∈
No ↔ (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅))
/su 𝑥𝑅) ∈ No )) |
165 | 163, 164 | syl5ibrcom 246 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅‘𝑗))) → (𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)
→ 𝑎 ∈ No )) |
166 | 165 | rexlimdvva 3210 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)
→ 𝑎 ∈ No )) |
167 | 166 | abssdv 4065 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) → {𝑎
∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}
⊆ No ) |
168 | 143, 167 | unssd 4186 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) → ({𝑎
∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)})
⊆ No ) |
169 | 121, 168 | unssd 4186 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) → ((𝑅‘𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s
𝑥}∃𝑦𝐿 ∈ (𝐿‘𝑗)𝑎 = (( 1s +s ((𝑥𝐿
-s 𝐴)
·s 𝑦𝐿)) /su
𝑥𝐿)}
∪ {𝑎 ∣
∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅‘𝑗)𝑎 = (( 1s +s ((𝑥𝑅
-s 𝐴)
·s 𝑦𝑅)) /su
𝑥𝑅)}))
⊆ No ) |
170 | 120, 169 | eqsstrd 4020 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) → (𝑅‘suc 𝑗) ⊆ No
) |
171 | 118, 170 | jca 511 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ω ∧ ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) → ((𝐿‘suc 𝑗) ⊆ No
∧ (𝑅‘suc 𝑗) ⊆
No )) |
172 | 171 | 3exp 1118 |
. . . . 5
⊢ (𝜑 → (𝑗 ∈ ω → (((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No ) → ((𝐿‘suc 𝑗) ⊆ No
∧ (𝑅‘suc 𝑗) ⊆
No )))) |
173 | 172 | com12 32 |
. . . 4
⊢ (𝑗 ∈ ω → (𝜑 → (((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No ) → ((𝐿‘suc 𝑗) ⊆ No
∧ (𝑅‘suc 𝑗) ⊆
No )))) |
174 | 173 | a2d 29 |
. . 3
⊢ (𝑗 ∈ ω → ((𝜑 → ((𝐿‘𝑗) ⊆ No
∧ (𝑅‘𝑗) ⊆
No )) → (𝜑 →
((𝐿‘suc 𝑗) ⊆
No ∧ (𝑅‘suc 𝑗) ⊆ No
)))) |
175 | 6, 12, 18, 24, 37, 174 | finds 7893 |
. 2
⊢ (𝐼 ∈ ω → (𝜑 → ((𝐿‘𝐼) ⊆ No
∧ (𝑅‘𝐼) ⊆
No ))) |
176 | 175 | impcom 407 |
1
⊢ ((𝜑 ∧ 𝐼 ∈ ω) → ((𝐿‘𝐼) ⊆ No
∧ (𝑅‘𝐼) ⊆
No )) |