MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  precsexlem8 Structured version   Visualization version   GIF version

Theorem precsexlem8 28116
Description: Lemma for surreal reciprocal. Show that the left and right functions give sets of surreals. (Contributed by Scott Fenton, 13-Mar-2025.)
Hypotheses
Ref Expression
precsexlem.1 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
precsexlem.2 𝐿 = (1st𝐹)
precsexlem.3 𝑅 = (2nd𝐹)
precsexlem.4 (𝜑𝐴 No )
precsexlem.5 (𝜑 → 0s <s 𝐴)
precsexlem.6 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
Assertion
Ref Expression
precsexlem8 ((𝜑𝐼 ∈ ω) → ((𝐿𝐼) ⊆ No ∧ (𝑅𝐼) ⊆ No ))
Distinct variable groups:   𝐴,𝑎,𝑙,𝑝,𝑟,𝑥,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦,𝑦𝐿,𝑦𝑅   𝐹,𝑙,𝑝   𝐿,𝑎,𝑙,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝑅,𝑎,𝑙,𝑟,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅   𝜑,𝑎,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑟,𝑝,𝑙,𝑥𝑂)   𝑅(𝑥,𝑦,𝑝,𝑥𝑂)   𝐹(𝑥,𝑦,𝑟,𝑎,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐼(𝑥,𝑦,𝑟,𝑝,𝑎,𝑙,𝑥𝑂,𝑥𝐿,𝑥𝑅,𝑦𝐿,𝑦𝑅)   𝐿(𝑥,𝑦,𝑟,𝑝,𝑥𝑂)

Proof of Theorem precsexlem8
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6858 . . . . . 6 (𝑖 = ∅ → (𝐿𝑖) = (𝐿‘∅))
21sseq1d 3978 . . . . 5 (𝑖 = ∅ → ((𝐿𝑖) ⊆ No ↔ (𝐿‘∅) ⊆ No ))
3 fveq2 6858 . . . . . 6 (𝑖 = ∅ → (𝑅𝑖) = (𝑅‘∅))
43sseq1d 3978 . . . . 5 (𝑖 = ∅ → ((𝑅𝑖) ⊆ No ↔ (𝑅‘∅) ⊆ No ))
52, 4anbi12d 632 . . . 4 (𝑖 = ∅ → (((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No ) ↔ ((𝐿‘∅) ⊆ No ∧ (𝑅‘∅) ⊆ No )))
65imbi2d 340 . . 3 (𝑖 = ∅ → ((𝜑 → ((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No )) ↔ (𝜑 → ((𝐿‘∅) ⊆ No ∧ (𝑅‘∅) ⊆ No ))))
7 fveq2 6858 . . . . . 6 (𝑖 = 𝑗 → (𝐿𝑖) = (𝐿𝑗))
87sseq1d 3978 . . . . 5 (𝑖 = 𝑗 → ((𝐿𝑖) ⊆ No ↔ (𝐿𝑗) ⊆ No ))
9 fveq2 6858 . . . . . 6 (𝑖 = 𝑗 → (𝑅𝑖) = (𝑅𝑗))
109sseq1d 3978 . . . . 5 (𝑖 = 𝑗 → ((𝑅𝑖) ⊆ No ↔ (𝑅𝑗) ⊆ No ))
118, 10anbi12d 632 . . . 4 (𝑖 = 𝑗 → (((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No ) ↔ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )))
1211imbi2d 340 . . 3 (𝑖 = 𝑗 → ((𝜑 → ((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No )) ↔ (𝜑 → ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No ))))
13 fveq2 6858 . . . . . 6 (𝑖 = suc 𝑗 → (𝐿𝑖) = (𝐿‘suc 𝑗))
1413sseq1d 3978 . . . . 5 (𝑖 = suc 𝑗 → ((𝐿𝑖) ⊆ No ↔ (𝐿‘suc 𝑗) ⊆ No ))
15 fveq2 6858 . . . . . 6 (𝑖 = suc 𝑗 → (𝑅𝑖) = (𝑅‘suc 𝑗))
1615sseq1d 3978 . . . . 5 (𝑖 = suc 𝑗 → ((𝑅𝑖) ⊆ No ↔ (𝑅‘suc 𝑗) ⊆ No ))
1714, 16anbi12d 632 . . . 4 (𝑖 = suc 𝑗 → (((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No ) ↔ ((𝐿‘suc 𝑗) ⊆ No ∧ (𝑅‘suc 𝑗) ⊆ No )))
1817imbi2d 340 . . 3 (𝑖 = suc 𝑗 → ((𝜑 → ((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No )) ↔ (𝜑 → ((𝐿‘suc 𝑗) ⊆ No ∧ (𝑅‘suc 𝑗) ⊆ No ))))
19 fveq2 6858 . . . . . 6 (𝑖 = 𝐼 → (𝐿𝑖) = (𝐿𝐼))
2019sseq1d 3978 . . . . 5 (𝑖 = 𝐼 → ((𝐿𝑖) ⊆ No ↔ (𝐿𝐼) ⊆ No ))
21 fveq2 6858 . . . . . 6 (𝑖 = 𝐼 → (𝑅𝑖) = (𝑅𝐼))
2221sseq1d 3978 . . . . 5 (𝑖 = 𝐼 → ((𝑅𝑖) ⊆ No ↔ (𝑅𝐼) ⊆ No ))
2320, 22anbi12d 632 . . . 4 (𝑖 = 𝐼 → (((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No ) ↔ ((𝐿𝐼) ⊆ No ∧ (𝑅𝐼) ⊆ No )))
2423imbi2d 340 . . 3 (𝑖 = 𝐼 → ((𝜑 → ((𝐿𝑖) ⊆ No ∧ (𝑅𝑖) ⊆ No )) ↔ (𝜑 → ((𝐿𝐼) ⊆ No ∧ (𝑅𝐼) ⊆ No ))))
25 precsexlem.1 . . . . . . 7 𝐹 = rec((𝑝 ∈ V ↦ (1st𝑝) / 𝑙(2nd𝑝) / 𝑟⟨(𝑙 ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})), (𝑟 ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿𝑙 𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅𝑟 𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}))⟩), ⟨{ 0s }, ∅⟩)
26 precsexlem.2 . . . . . . 7 𝐿 = (1st𝐹)
27 precsexlem.3 . . . . . . 7 𝑅 = (2nd𝐹)
2825, 26, 27precsexlem1 28109 . . . . . 6 (𝐿‘∅) = { 0s }
29 0sno 27738 . . . . . . 7 0s No
30 snssi 4772 . . . . . . 7 ( 0s No → { 0s } ⊆ No )
3129, 30ax-mp 5 . . . . . 6 { 0s } ⊆ No
3228, 31eqsstri 3993 . . . . 5 (𝐿‘∅) ⊆ No
3325, 26, 27precsexlem2 28110 . . . . . 6 (𝑅‘∅) = ∅
34 0ss 4363 . . . . . 6 ∅ ⊆ No
3533, 34eqsstri 3993 . . . . 5 (𝑅‘∅) ⊆ No
3632, 35pm3.2i 470 . . . 4 ((𝐿‘∅) ⊆ No ∧ (𝑅‘∅) ⊆ No )
3736a1i 11 . . 3 (𝜑 → ((𝐿‘∅) ⊆ No ∧ (𝑅‘∅) ⊆ No ))
3825, 26, 27precsexlem4 28112 . . . . . . . . 9 (𝑗 ∈ ω → (𝐿‘suc 𝑗) = ((𝐿𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
39383ad2ant2 1134 . . . . . . . 8 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (𝐿‘suc 𝑗) = ((𝐿𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})))
40 simp3l 1202 . . . . . . . . 9 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (𝐿𝑗) ⊆ No )
41 1sno 27739 . . . . . . . . . . . . . . . 16 1s No
4241a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 1s No )
43 rightssno 27793 . . . . . . . . . . . . . . . . . 18 ( R ‘𝐴) ⊆ No
44 simprl 770 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝑅 ∈ ( R ‘𝐴))
4543, 44sselid 3944 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝑅 No )
46 precsexlem.4 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 No )
47463ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → 𝐴 No )
4847adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝐴 No )
4945, 48subscld 27967 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝑥𝑅 -s 𝐴) ∈ No )
50 simpl3l 1229 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐿𝑗) ⊆ No )
51 simprr 772 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑦𝐿 ∈ (𝐿𝑗))
5250, 51sseldd 3947 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑦𝐿 No )
5349, 52mulscld 28038 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿) ∈ No )
5442, 53addscld 27887 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) ∈ No )
5529a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 0s No )
56 precsexlem.5 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0s <s 𝐴)
57563ad2ant1 1133 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → 0s <s 𝐴)
5857adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 0s <s 𝐴)
59 rightgt 27776 . . . . . . . . . . . . . . . . 17 (𝑥𝑅 ∈ ( R ‘𝐴) → 𝐴 <s 𝑥𝑅)
6044, 59syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝐴 <s 𝑥𝑅)
6155, 48, 45, 58, 60slttrd 27671 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 0s <s 𝑥𝑅)
6261sgt0ne0d 27748 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝑅 ≠ 0s )
63 breq2 5111 . . . . . . . . . . . . . . . . 17 (𝑥𝑂 = 𝑥𝑅 → ( 0s <s 𝑥𝑂 ↔ 0s <s 𝑥𝑅))
64 oveq1 7394 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑂 = 𝑥𝑅 → (𝑥𝑂 ·s 𝑦) = (𝑥𝑅 ·s 𝑦))
6564eqeq1d 2731 . . . . . . . . . . . . . . . . . 18 (𝑥𝑂 = 𝑥𝑅 → ((𝑥𝑂 ·s 𝑦) = 1s ↔ (𝑥𝑅 ·s 𝑦) = 1s ))
6665rexbidv 3157 . . . . . . . . . . . . . . . . 17 (𝑥𝑂 = 𝑥𝑅 → (∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ↔ ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s ))
6763, 66imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑥𝑂 = 𝑥𝑅 → (( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ) ↔ ( 0s <s 𝑥𝑅 → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s )))
68 precsexlem.6 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
69683ad2ant1 1133 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
7069adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
71 elun2 4146 . . . . . . . . . . . . . . . . 17 (𝑥𝑅 ∈ ( R ‘𝐴) → 𝑥𝑅 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
7244, 71syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝑅 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
7367, 70, 72rspcdva 3589 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( 0s <s 𝑥𝑅 → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s ))
7461, 73mpd 15 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s )
7554, 45, 62, 74divsclwd 28099 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ∈ No )
76 eleq1 2816 . . . . . . . . . . . . 13 (𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) → (𝑎 No ↔ (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) ∈ No ))
7775, 76syl5ibrcom 247 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) → 𝑎 No ))
7877rexlimdvva 3194 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅) → 𝑎 No ))
7978abssdv 4031 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ⊆ No )
8041a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 1s No )
81 leftssno 27792 . . . . . . . . . . . . . . . . . 18 ( L ‘𝐴) ⊆ No
82 ssrab2 4043 . . . . . . . . . . . . . . . . . . 19 {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ⊆ ( L ‘𝐴)
83 simprl 770 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})
8482, 83sselid 3944 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝐿 ∈ ( L ‘𝐴))
8581, 84sselid 3944 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝐿 No )
8647adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝐴 No )
8785, 86subscld 27967 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑥𝐿 -s 𝐴) ∈ No )
88 simpl3r 1230 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑅𝑗) ⊆ No )
89 simprr 772 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑦𝑅 ∈ (𝑅𝑗))
9088, 89sseldd 3947 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑦𝑅 No )
9187, 90mulscld 28038 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅) ∈ No )
9280, 91addscld 27887 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) ∈ No )
93 breq2 5111 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑥𝐿 → ( 0s <s 𝑥 ↔ 0s <s 𝑥𝐿))
9493elrab 3659 . . . . . . . . . . . . . . . . 17 (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ↔ (𝑥𝐿 ∈ ( L ‘𝐴) ∧ 0s <s 𝑥𝐿))
9594simprbi 496 . . . . . . . . . . . . . . . 16 (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} → 0s <s 𝑥𝐿)
9683, 95syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 0s <s 𝑥𝐿)
9796sgt0ne0d 27748 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝐿 ≠ 0s )
98 breq2 5111 . . . . . . . . . . . . . . . . 17 (𝑥𝑂 = 𝑥𝐿 → ( 0s <s 𝑥𝑂 ↔ 0s <s 𝑥𝐿))
99 oveq1 7394 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑂 = 𝑥𝐿 → (𝑥𝑂 ·s 𝑦) = (𝑥𝐿 ·s 𝑦))
10099eqeq1d 2731 . . . . . . . . . . . . . . . . . 18 (𝑥𝑂 = 𝑥𝐿 → ((𝑥𝑂 ·s 𝑦) = 1s ↔ (𝑥𝐿 ·s 𝑦) = 1s ))
101100rexbidv 3157 . . . . . . . . . . . . . . . . 17 (𝑥𝑂 = 𝑥𝐿 → (∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ↔ ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s ))
10298, 101imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑥𝑂 = 𝑥𝐿 → (( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ) ↔ ( 0s <s 𝑥𝐿 → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s )))
10369adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
104 elun1 4145 . . . . . . . . . . . . . . . . 17 (𝑥𝐿 ∈ ( L ‘𝐴) → 𝑥𝐿 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
10584, 104syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝐿 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
106102, 103, 105rspcdva 3589 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 0s <s 𝑥𝐿 → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s ))
10796, 106mpd 15 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s )
10892, 85, 97, 107divsclwd 28099 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) ∈ No )
109 eleq1 2816 . . . . . . . . . . . . 13 (𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) → (𝑎 No ↔ (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) ∈ No ))
110108, 109syl5ibrcom 247 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) → 𝑎 No ))
111110rexlimdvva 3194 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿) → 𝑎 No ))
112111abssdv 4031 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)} ⊆ No )
11379, 112unssd 4155 . . . . . . . . 9 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)}) ⊆ No )
11440, 113unssd 4155 . . . . . . . 8 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → ((𝐿𝑗) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝑅)} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝐿)})) ⊆ No )
11539, 114eqsstrd 3981 . . . . . . 7 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (𝐿‘suc 𝑗) ⊆ No )
11625, 26, 27precsexlem5 28113 . . . . . . . . 9 (𝑗 ∈ ω → (𝑅‘suc 𝑗) = ((𝑅𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
1171163ad2ant2 1134 . . . . . . . 8 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (𝑅‘suc 𝑗) = ((𝑅𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})))
118 simp3r 1203 . . . . . . . . 9 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (𝑅𝑗) ⊆ No )
11941a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 1s No )
120 simprl 770 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥})
12182, 120sselid 3944 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝐿 ∈ ( L ‘𝐴))
12281, 121sselid 3944 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝐿 No )
12347adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝐴 No )
124122, 123subscld 27967 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝑥𝐿 -s 𝐴) ∈ No )
125 simpl3l 1229 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝐿𝑗) ⊆ No )
126 simprr 772 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑦𝐿 ∈ (𝐿𝑗))
127125, 126sseldd 3947 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑦𝐿 No )
128124, 127mulscld 28038 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿) ∈ No )
129119, 128addscld 27887 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) ∈ No )
130120, 95syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 0s <s 𝑥𝐿)
131130sgt0ne0d 27748 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝐿 ≠ 0s )
13269adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
133121, 104syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → 𝑥𝐿 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
134102, 132, 133rspcdva 3589 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ( 0s <s 𝑥𝐿 → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s ))
135130, 134mpd 15 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → ∃𝑦 No (𝑥𝐿 ·s 𝑦) = 1s )
136129, 122, 131, 135divsclwd 28099 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ∈ No )
137 eleq1 2816 . . . . . . . . . . . . 13 (𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) → (𝑎 No ↔ (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) ∈ No ))
138136, 137syl5ibrcom 247 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥} ∧ 𝑦𝐿 ∈ (𝐿𝑗))) → (𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) → 𝑎 No ))
139138rexlimdvva 3194 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿) → 𝑎 No ))
140139abssdv 4031 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → {𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ⊆ No )
14141a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 1s No )
142 simprl 770 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝑅 ∈ ( R ‘𝐴))
14343, 142sselid 3944 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝑅 No )
14447adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝐴 No )
145143, 144subscld 27967 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑥𝑅 -s 𝐴) ∈ No )
146 simpl3r 1230 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑅𝑗) ⊆ No )
147 simprr 772 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑦𝑅 ∈ (𝑅𝑗))
148146, 147sseldd 3947 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑦𝑅 No )
149145, 148mulscld 28038 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅) ∈ No )
150141, 149addscld 27887 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) ∈ No )
15129a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 0s No )
15257adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 0s <s 𝐴)
153142, 59syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝐴 <s 𝑥𝑅)
154151, 144, 143, 152, 153slttrd 27671 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 0s <s 𝑥𝑅)
155154sgt0ne0d 27748 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝑅 ≠ 0s )
15669adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ∀𝑥𝑂 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴))( 0s <s 𝑥𝑂 → ∃𝑦 No (𝑥𝑂 ·s 𝑦) = 1s ))
157142, 71syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → 𝑥𝑅 ∈ (( L ‘𝐴) ∪ ( R ‘𝐴)))
15867, 156, 157rspcdva 3589 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ( 0s <s 𝑥𝑅 → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s ))
159154, 158mpd 15 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → ∃𝑦 No (𝑥𝑅 ·s 𝑦) = 1s )
160150, 143, 155, 159divsclwd 28099 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) ∈ No )
161 eleq1 2816 . . . . . . . . . . . . 13 (𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) → (𝑎 No ↔ (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) ∈ No ))
162160, 161syl5ibrcom 247 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑦𝑅 ∈ (𝑅𝑗))) → (𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) → 𝑎 No ))
163162rexlimdvva 3194 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅) → 𝑎 No ))
164163abssdv 4031 . . . . . . . . . 10 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)} ⊆ No )
165140, 164unssd 4155 . . . . . . . . 9 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)}) ⊆ No )
166118, 165unssd 4155 . . . . . . . 8 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → ((𝑅𝑗) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ {𝑥 ∈ ( L ‘𝐴) ∣ 0s <s 𝑥}∃𝑦𝐿 ∈ (𝐿𝑗)𝑎 = (( 1s +s ((𝑥𝐿 -s 𝐴) ·s 𝑦𝐿)) /su 𝑥𝐿)} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑦𝑅 ∈ (𝑅𝑗)𝑎 = (( 1s +s ((𝑥𝑅 -s 𝐴) ·s 𝑦𝑅)) /su 𝑥𝑅)})) ⊆ No )
167117, 166eqsstrd 3981 . . . . . . 7 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (𝑅‘suc 𝑗) ⊆ No )
168115, 167jca 511 . . . . . 6 ((𝜑𝑗 ∈ ω ∧ ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → ((𝐿‘suc 𝑗) ⊆ No ∧ (𝑅‘suc 𝑗) ⊆ No ))
1691683exp 1119 . . . . 5 (𝜑 → (𝑗 ∈ ω → (((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No ) → ((𝐿‘suc 𝑗) ⊆ No ∧ (𝑅‘suc 𝑗) ⊆ No ))))
170169com12 32 . . . 4 (𝑗 ∈ ω → (𝜑 → (((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No ) → ((𝐿‘suc 𝑗) ⊆ No ∧ (𝑅‘suc 𝑗) ⊆ No ))))
171170a2d 29 . . 3 (𝑗 ∈ ω → ((𝜑 → ((𝐿𝑗) ⊆ No ∧ (𝑅𝑗) ⊆ No )) → (𝜑 → ((𝐿‘suc 𝑗) ⊆ No ∧ (𝑅‘suc 𝑗) ⊆ No ))))
1726, 12, 18, 24, 37, 171finds 7872 . 2 (𝐼 ∈ ω → (𝜑 → ((𝐿𝐼) ⊆ No ∧ (𝑅𝐼) ⊆ No )))
173172impcom 407 1 ((𝜑𝐼 ∈ ω) → ((𝐿𝐼) ⊆ No ∧ (𝑅𝐼) ⊆ No ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  csb 3862  cun 3912  wss 3914  c0 4296  {csn 4589  cop 4595   class class class wbr 5107  cmpt 5188  ccom 5642  suc csuc 6334  cfv 6511  (class class class)co 7387  ωcom 7842  1st c1st 7966  2nd c2nd 7967  reccrdg 8377   No csur 27551   <s cslt 27552   0s c0s 27734   1s c1s 27735   L cleft 27753   R cright 27754   +s cadds 27866   -s csubs 27926   ·s cmuls 28009   /su cdivs 28090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-nadd 8630  df-no 27554  df-slt 27555  df-bday 27556  df-sle 27657  df-sslt 27693  df-scut 27695  df-0s 27736  df-1s 27737  df-made 27755  df-old 27756  df-left 27758  df-right 27759  df-norec 27845  df-norec2 27856  df-adds 27867  df-negs 27927  df-subs 27928  df-muls 28010  df-divs 28091
This theorem is referenced by:  precsexlem9  28117  precsexlem10  28118
  Copyright terms: Public domain W3C validator