Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ackbij1lem12 | Structured version Visualization version GIF version |
Description: Lemma for ackbij1 9994. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
Ref | Expression |
---|---|
ackbij.f | ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) |
Ref | Expression |
---|---|
ackbij1lem12 | ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐹‘𝐴) ⊆ (𝐹‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ackbij.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) | |
2 | 1 | ackbij1lem10 9985 | . . . 4 ⊢ 𝐹:(𝒫 ω ∩ Fin)⟶ω |
3 | 1 | ackbij1lem11 9986 | . . . 4 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → 𝐴 ∈ (𝒫 ω ∩ Fin)) |
4 | ffvelrn 6959 | . . . 4 ⊢ ((𝐹:(𝒫 ω ∩ Fin)⟶ω ∧ 𝐴 ∈ (𝒫 ω ∩ Fin)) → (𝐹‘𝐴) ∈ ω) | |
5 | 2, 3, 4 | sylancr 587 | . . 3 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐹‘𝐴) ∈ ω) |
6 | difssd 4067 | . . . . 5 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐵 ∖ 𝐴) ⊆ 𝐵) | |
7 | 1 | ackbij1lem11 9986 | . . . . 5 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐵 ∖ 𝐴) ⊆ 𝐵) → (𝐵 ∖ 𝐴) ∈ (𝒫 ω ∩ Fin)) |
8 | 6, 7 | syldan 591 | . . . 4 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐵 ∖ 𝐴) ∈ (𝒫 ω ∩ Fin)) |
9 | ffvelrn 6959 | . . . 4 ⊢ ((𝐹:(𝒫 ω ∩ Fin)⟶ω ∧ (𝐵 ∖ 𝐴) ∈ (𝒫 ω ∩ Fin)) → (𝐹‘(𝐵 ∖ 𝐴)) ∈ ω) | |
10 | 2, 8, 9 | sylancr 587 | . . 3 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐹‘(𝐵 ∖ 𝐴)) ∈ ω) |
11 | nnaword1 8460 | . . 3 ⊢ (((𝐹‘𝐴) ∈ ω ∧ (𝐹‘(𝐵 ∖ 𝐴)) ∈ ω) → (𝐹‘𝐴) ⊆ ((𝐹‘𝐴) +o (𝐹‘(𝐵 ∖ 𝐴)))) | |
12 | 5, 10, 11 | syl2anc 584 | . 2 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐹‘𝐴) ⊆ ((𝐹‘𝐴) +o (𝐹‘(𝐵 ∖ 𝐴)))) |
13 | disjdif 4405 | . . . . 5 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | |
14 | 13 | a1i 11 | . . . 4 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅) |
15 | 1 | ackbij1lem9 9984 | . . . 4 ⊢ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ (𝐵 ∖ 𝐴) ∈ (𝒫 ω ∩ Fin) ∧ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅) → (𝐹‘(𝐴 ∪ (𝐵 ∖ 𝐴))) = ((𝐹‘𝐴) +o (𝐹‘(𝐵 ∖ 𝐴)))) |
16 | 3, 8, 14, 15 | syl3anc 1370 | . . 3 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐹‘(𝐴 ∪ (𝐵 ∖ 𝐴))) = ((𝐹‘𝐴) +o (𝐹‘(𝐵 ∖ 𝐴)))) |
17 | undif 4415 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) | |
18 | 17 | biimpi 215 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) |
19 | 18 | adantl 482 | . . . 4 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) |
20 | 19 | fveq2d 6778 | . . 3 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐹‘(𝐴 ∪ (𝐵 ∖ 𝐴))) = (𝐹‘𝐵)) |
21 | 16, 20 | eqtr3d 2780 | . 2 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → ((𝐹‘𝐴) +o (𝐹‘(𝐵 ∖ 𝐴))) = (𝐹‘𝐵)) |
22 | 12, 21 | sseqtrd 3961 | 1 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐹‘𝐴) ⊆ (𝐹‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∖ cdif 3884 ∪ cun 3885 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 {csn 4561 ∪ ciun 4924 ↦ cmpt 5157 × cxp 5587 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ωcom 7712 +o coa 8294 Fincfn 8733 cardccrd 9693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oadd 8301 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-dju 9659 df-card 9697 |
This theorem is referenced by: ackbij1lem15 9990 ackbij1b 9995 |
Copyright terms: Public domain | W3C validator |