MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem12 Structured version   Visualization version   GIF version

Theorem ackbij1lem12 9388
Description: Lemma for ackbij1 9395. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1lem12 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴𝐵) → (𝐹𝐴) ⊆ (𝐹𝐵))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem ackbij1lem12
StepHypRef Expression
1 ackbij.f . . . . 5 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
21ackbij1lem10 9386 . . . 4 𝐹:(𝒫 ω ∩ Fin)⟶ω
31ackbij1lem11 9387 . . . 4 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴𝐵) → 𝐴 ∈ (𝒫 ω ∩ Fin))
4 ffvelrn 6621 . . . 4 ((𝐹:(𝒫 ω ∩ Fin)⟶ω ∧ 𝐴 ∈ (𝒫 ω ∩ Fin)) → (𝐹𝐴) ∈ ω)
52, 3, 4sylancr 581 . . 3 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴𝐵) → (𝐹𝐴) ∈ ω)
6 difssd 3960 . . . . 5 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴𝐵) → (𝐵𝐴) ⊆ 𝐵)
71ackbij1lem11 9387 . . . . 5 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐵𝐴) ⊆ 𝐵) → (𝐵𝐴) ∈ (𝒫 ω ∩ Fin))
86, 7syldan 585 . . . 4 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴𝐵) → (𝐵𝐴) ∈ (𝒫 ω ∩ Fin))
9 ffvelrn 6621 . . . 4 ((𝐹:(𝒫 ω ∩ Fin)⟶ω ∧ (𝐵𝐴) ∈ (𝒫 ω ∩ Fin)) → (𝐹‘(𝐵𝐴)) ∈ ω)
102, 8, 9sylancr 581 . . 3 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴𝐵) → (𝐹‘(𝐵𝐴)) ∈ ω)
11 nnaword1 7993 . . 3 (((𝐹𝐴) ∈ ω ∧ (𝐹‘(𝐵𝐴)) ∈ ω) → (𝐹𝐴) ⊆ ((𝐹𝐴) +o (𝐹‘(𝐵𝐴))))
125, 10, 11syl2anc 579 . 2 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴𝐵) → (𝐹𝐴) ⊆ ((𝐹𝐴) +o (𝐹‘(𝐵𝐴))))
13 disjdif 4263 . . . . 5 (𝐴 ∩ (𝐵𝐴)) = ∅
1413a1i 11 . . . 4 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴𝐵) → (𝐴 ∩ (𝐵𝐴)) = ∅)
151ackbij1lem9 9385 . . . 4 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ (𝐵𝐴) ∈ (𝒫 ω ∩ Fin) ∧ (𝐴 ∩ (𝐵𝐴)) = ∅) → (𝐹‘(𝐴 ∪ (𝐵𝐴))) = ((𝐹𝐴) +o (𝐹‘(𝐵𝐴))))
163, 8, 14, 15syl3anc 1439 . . 3 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴𝐵) → (𝐹‘(𝐴 ∪ (𝐵𝐴))) = ((𝐹𝐴) +o (𝐹‘(𝐵𝐴))))
17 undif 4272 . . . . . 6 (𝐴𝐵 ↔ (𝐴 ∪ (𝐵𝐴)) = 𝐵)
1817biimpi 208 . . . . 5 (𝐴𝐵 → (𝐴 ∪ (𝐵𝐴)) = 𝐵)
1918adantl 475 . . . 4 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴𝐵) → (𝐴 ∪ (𝐵𝐴)) = 𝐵)
2019fveq2d 6450 . . 3 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴𝐵) → (𝐹‘(𝐴 ∪ (𝐵𝐴))) = (𝐹𝐵))
2116, 20eqtr3d 2815 . 2 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴𝐵) → ((𝐹𝐴) +o (𝐹‘(𝐵𝐴))) = (𝐹𝐵))
2212, 21sseqtrd 3859 1 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴𝐵) → (𝐹𝐴) ⊆ (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2106  cdif 3788  cun 3789  cin 3790  wss 3791  c0 4140  𝒫 cpw 4378  {csn 4397   ciun 4753  cmpt 4965   × cxp 5353  wf 6131  cfv 6135  (class class class)co 6922  ωcom 7343   +o coa 7840  Fincfn 8241  cardccrd 9094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-card 9098  df-cda 9325
This theorem is referenced by:  ackbij1lem15  9391  ackbij1b  9396
  Copyright terms: Public domain W3C validator