| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ackbij1lem12 | Structured version Visualization version GIF version | ||
| Description: Lemma for ackbij1 10131. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
| Ref | Expression |
|---|---|
| ackbij.f | ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) |
| Ref | Expression |
|---|---|
| ackbij1lem12 | ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐹‘𝐴) ⊆ (𝐹‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackbij.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) | |
| 2 | 1 | ackbij1lem10 10122 | . . . 4 ⊢ 𝐹:(𝒫 ω ∩ Fin)⟶ω |
| 3 | 1 | ackbij1lem11 10123 | . . . 4 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → 𝐴 ∈ (𝒫 ω ∩ Fin)) |
| 4 | ffvelcdm 7015 | . . . 4 ⊢ ((𝐹:(𝒫 ω ∩ Fin)⟶ω ∧ 𝐴 ∈ (𝒫 ω ∩ Fin)) → (𝐹‘𝐴) ∈ ω) | |
| 5 | 2, 3, 4 | sylancr 587 | . . 3 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐹‘𝐴) ∈ ω) |
| 6 | difssd 4088 | . . . . 5 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐵 ∖ 𝐴) ⊆ 𝐵) | |
| 7 | 1 | ackbij1lem11 10123 | . . . . 5 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐵 ∖ 𝐴) ⊆ 𝐵) → (𝐵 ∖ 𝐴) ∈ (𝒫 ω ∩ Fin)) |
| 8 | 6, 7 | syldan 591 | . . . 4 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐵 ∖ 𝐴) ∈ (𝒫 ω ∩ Fin)) |
| 9 | ffvelcdm 7015 | . . . 4 ⊢ ((𝐹:(𝒫 ω ∩ Fin)⟶ω ∧ (𝐵 ∖ 𝐴) ∈ (𝒫 ω ∩ Fin)) → (𝐹‘(𝐵 ∖ 𝐴)) ∈ ω) | |
| 10 | 2, 8, 9 | sylancr 587 | . . 3 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐹‘(𝐵 ∖ 𝐴)) ∈ ω) |
| 11 | nnaword1 8547 | . . 3 ⊢ (((𝐹‘𝐴) ∈ ω ∧ (𝐹‘(𝐵 ∖ 𝐴)) ∈ ω) → (𝐹‘𝐴) ⊆ ((𝐹‘𝐴) +o (𝐹‘(𝐵 ∖ 𝐴)))) | |
| 12 | 5, 10, 11 | syl2anc 584 | . 2 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐹‘𝐴) ⊆ ((𝐹‘𝐴) +o (𝐹‘(𝐵 ∖ 𝐴)))) |
| 13 | disjdif 4423 | . . . . 5 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | |
| 14 | 13 | a1i 11 | . . . 4 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅) |
| 15 | 1 | ackbij1lem9 10121 | . . . 4 ⊢ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ (𝐵 ∖ 𝐴) ∈ (𝒫 ω ∩ Fin) ∧ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅) → (𝐹‘(𝐴 ∪ (𝐵 ∖ 𝐴))) = ((𝐹‘𝐴) +o (𝐹‘(𝐵 ∖ 𝐴)))) |
| 16 | 3, 8, 14, 15 | syl3anc 1373 | . . 3 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐹‘(𝐴 ∪ (𝐵 ∖ 𝐴))) = ((𝐹‘𝐴) +o (𝐹‘(𝐵 ∖ 𝐴)))) |
| 17 | undif 4433 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) | |
| 18 | 17 | biimpi 216 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) |
| 19 | 18 | adantl 481 | . . . 4 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) |
| 20 | 19 | fveq2d 6826 | . . 3 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐹‘(𝐴 ∪ (𝐵 ∖ 𝐴))) = (𝐹‘𝐵)) |
| 21 | 16, 20 | eqtr3d 2766 | . 2 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → ((𝐹‘𝐴) +o (𝐹‘(𝐵 ∖ 𝐴))) = (𝐹‘𝐵)) |
| 22 | 12, 21 | sseqtrd 3972 | 1 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐹‘𝐴) ⊆ (𝐹‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3900 ∪ cun 3901 ∩ cin 3902 ⊆ wss 3903 ∅c0 4284 𝒫 cpw 4551 {csn 4577 ∪ ciun 4941 ↦ cmpt 5173 × cxp 5617 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ωcom 7799 +o coa 8385 Fincfn 8872 cardccrd 9831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-oadd 8392 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-dju 9797 df-card 9835 |
| This theorem is referenced by: ackbij1lem15 10127 ackbij1b 10132 |
| Copyright terms: Public domain | W3C validator |