| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ackbij1lem12 | Structured version Visualization version GIF version | ||
| Description: Lemma for ackbij1 10166. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
| Ref | Expression |
|---|---|
| ackbij.f | ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) |
| Ref | Expression |
|---|---|
| ackbij1lem12 | ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐹‘𝐴) ⊆ (𝐹‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackbij.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) | |
| 2 | 1 | ackbij1lem10 10157 | . . . 4 ⊢ 𝐹:(𝒫 ω ∩ Fin)⟶ω |
| 3 | 1 | ackbij1lem11 10158 | . . . 4 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → 𝐴 ∈ (𝒫 ω ∩ Fin)) |
| 4 | ffvelcdm 7035 | . . . 4 ⊢ ((𝐹:(𝒫 ω ∩ Fin)⟶ω ∧ 𝐴 ∈ (𝒫 ω ∩ Fin)) → (𝐹‘𝐴) ∈ ω) | |
| 5 | 2, 3, 4 | sylancr 587 | . . 3 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐹‘𝐴) ∈ ω) |
| 6 | difssd 4096 | . . . . 5 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐵 ∖ 𝐴) ⊆ 𝐵) | |
| 7 | 1 | ackbij1lem11 10158 | . . . . 5 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐵 ∖ 𝐴) ⊆ 𝐵) → (𝐵 ∖ 𝐴) ∈ (𝒫 ω ∩ Fin)) |
| 8 | 6, 7 | syldan 591 | . . . 4 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐵 ∖ 𝐴) ∈ (𝒫 ω ∩ Fin)) |
| 9 | ffvelcdm 7035 | . . . 4 ⊢ ((𝐹:(𝒫 ω ∩ Fin)⟶ω ∧ (𝐵 ∖ 𝐴) ∈ (𝒫 ω ∩ Fin)) → (𝐹‘(𝐵 ∖ 𝐴)) ∈ ω) | |
| 10 | 2, 8, 9 | sylancr 587 | . . 3 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐹‘(𝐵 ∖ 𝐴)) ∈ ω) |
| 11 | nnaword1 8570 | . . 3 ⊢ (((𝐹‘𝐴) ∈ ω ∧ (𝐹‘(𝐵 ∖ 𝐴)) ∈ ω) → (𝐹‘𝐴) ⊆ ((𝐹‘𝐴) +o (𝐹‘(𝐵 ∖ 𝐴)))) | |
| 12 | 5, 10, 11 | syl2anc 584 | . 2 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐹‘𝐴) ⊆ ((𝐹‘𝐴) +o (𝐹‘(𝐵 ∖ 𝐴)))) |
| 13 | disjdif 4431 | . . . . 5 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | |
| 14 | 13 | a1i 11 | . . . 4 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅) |
| 15 | 1 | ackbij1lem9 10156 | . . . 4 ⊢ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ (𝐵 ∖ 𝐴) ∈ (𝒫 ω ∩ Fin) ∧ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅) → (𝐹‘(𝐴 ∪ (𝐵 ∖ 𝐴))) = ((𝐹‘𝐴) +o (𝐹‘(𝐵 ∖ 𝐴)))) |
| 16 | 3, 8, 14, 15 | syl3anc 1373 | . . 3 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐹‘(𝐴 ∪ (𝐵 ∖ 𝐴))) = ((𝐹‘𝐴) +o (𝐹‘(𝐵 ∖ 𝐴)))) |
| 17 | undif 4441 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) | |
| 18 | 17 | biimpi 216 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) |
| 19 | 18 | adantl 481 | . . . 4 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) |
| 20 | 19 | fveq2d 6844 | . . 3 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐹‘(𝐴 ∪ (𝐵 ∖ 𝐴))) = (𝐹‘𝐵)) |
| 21 | 16, 20 | eqtr3d 2766 | . 2 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → ((𝐹‘𝐴) +o (𝐹‘(𝐵 ∖ 𝐴))) = (𝐹‘𝐵)) |
| 22 | 12, 21 | sseqtrd 3980 | 1 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐹‘𝐴) ⊆ (𝐹‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3908 ∪ cun 3909 ∩ cin 3910 ⊆ wss 3911 ∅c0 4292 𝒫 cpw 4559 {csn 4585 ∪ ciun 4951 ↦ cmpt 5183 × cxp 5629 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ωcom 7822 +o coa 8408 Fincfn 8895 cardccrd 9864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-oadd 8415 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-dju 9830 df-card 9868 |
| This theorem is referenced by: ackbij1lem15 10162 ackbij1b 10167 |
| Copyright terms: Public domain | W3C validator |