MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem12 Structured version   Visualization version   GIF version

Theorem ackbij1lem12 10270
Description: Lemma for ackbij1 10277. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1lem12 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴𝐵) → (𝐹𝐴) ⊆ (𝐹𝐵))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem ackbij1lem12
StepHypRef Expression
1 ackbij.f . . . . 5 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
21ackbij1lem10 10268 . . . 4 𝐹:(𝒫 ω ∩ Fin)⟶ω
31ackbij1lem11 10269 . . . 4 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴𝐵) → 𝐴 ∈ (𝒫 ω ∩ Fin))
4 ffvelcdm 7101 . . . 4 ((𝐹:(𝒫 ω ∩ Fin)⟶ω ∧ 𝐴 ∈ (𝒫 ω ∩ Fin)) → (𝐹𝐴) ∈ ω)
52, 3, 4sylancr 587 . . 3 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴𝐵) → (𝐹𝐴) ∈ ω)
6 difssd 4137 . . . . 5 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴𝐵) → (𝐵𝐴) ⊆ 𝐵)
71ackbij1lem11 10269 . . . . 5 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐵𝐴) ⊆ 𝐵) → (𝐵𝐴) ∈ (𝒫 ω ∩ Fin))
86, 7syldan 591 . . . 4 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴𝐵) → (𝐵𝐴) ∈ (𝒫 ω ∩ Fin))
9 ffvelcdm 7101 . . . 4 ((𝐹:(𝒫 ω ∩ Fin)⟶ω ∧ (𝐵𝐴) ∈ (𝒫 ω ∩ Fin)) → (𝐹‘(𝐵𝐴)) ∈ ω)
102, 8, 9sylancr 587 . . 3 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴𝐵) → (𝐹‘(𝐵𝐴)) ∈ ω)
11 nnaword1 8667 . . 3 (((𝐹𝐴) ∈ ω ∧ (𝐹‘(𝐵𝐴)) ∈ ω) → (𝐹𝐴) ⊆ ((𝐹𝐴) +o (𝐹‘(𝐵𝐴))))
125, 10, 11syl2anc 584 . 2 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴𝐵) → (𝐹𝐴) ⊆ ((𝐹𝐴) +o (𝐹‘(𝐵𝐴))))
13 disjdif 4472 . . . . 5 (𝐴 ∩ (𝐵𝐴)) = ∅
1413a1i 11 . . . 4 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴𝐵) → (𝐴 ∩ (𝐵𝐴)) = ∅)
151ackbij1lem9 10267 . . . 4 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ (𝐵𝐴) ∈ (𝒫 ω ∩ Fin) ∧ (𝐴 ∩ (𝐵𝐴)) = ∅) → (𝐹‘(𝐴 ∪ (𝐵𝐴))) = ((𝐹𝐴) +o (𝐹‘(𝐵𝐴))))
163, 8, 14, 15syl3anc 1373 . . 3 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴𝐵) → (𝐹‘(𝐴 ∪ (𝐵𝐴))) = ((𝐹𝐴) +o (𝐹‘(𝐵𝐴))))
17 undif 4482 . . . . . 6 (𝐴𝐵 ↔ (𝐴 ∪ (𝐵𝐴)) = 𝐵)
1817biimpi 216 . . . . 5 (𝐴𝐵 → (𝐴 ∪ (𝐵𝐴)) = 𝐵)
1918adantl 481 . . . 4 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴𝐵) → (𝐴 ∪ (𝐵𝐴)) = 𝐵)
2019fveq2d 6910 . . 3 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴𝐵) → (𝐹‘(𝐴 ∪ (𝐵𝐴))) = (𝐹𝐵))
2116, 20eqtr3d 2779 . 2 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴𝐵) → ((𝐹𝐴) +o (𝐹‘(𝐵𝐴))) = (𝐹𝐵))
2212, 21sseqtrd 4020 1 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴𝐵) → (𝐹𝐴) ⊆ (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cdif 3948  cun 3949  cin 3950  wss 3951  c0 4333  𝒫 cpw 4600  {csn 4626   ciun 4991  cmpt 5225   × cxp 5683  wf 6557  cfv 6561  (class class class)co 7431  ωcom 7887   +o coa 8503  Fincfn 8985  cardccrd 9975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979
This theorem is referenced by:  ackbij1lem15  10273  ackbij1b  10278
  Copyright terms: Public domain W3C validator