Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem12 Structured version   Visualization version   GIF version

Theorem ackbij1lem12 9692
 Description: Lemma for ackbij1 9699. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1lem12 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴𝐵) → (𝐹𝐴) ⊆ (𝐹𝐵))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem ackbij1lem12
StepHypRef Expression
1 ackbij.f . . . . 5 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
21ackbij1lem10 9690 . . . 4 𝐹:(𝒫 ω ∩ Fin)⟶ω
31ackbij1lem11 9691 . . . 4 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴𝐵) → 𝐴 ∈ (𝒫 ω ∩ Fin))
4 ffvelrn 6841 . . . 4 ((𝐹:(𝒫 ω ∩ Fin)⟶ω ∧ 𝐴 ∈ (𝒫 ω ∩ Fin)) → (𝐹𝐴) ∈ ω)
52, 3, 4sylancr 591 . . 3 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴𝐵) → (𝐹𝐴) ∈ ω)
6 difssd 4039 . . . . 5 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴𝐵) → (𝐵𝐴) ⊆ 𝐵)
71ackbij1lem11 9691 . . . . 5 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐵𝐴) ⊆ 𝐵) → (𝐵𝐴) ∈ (𝒫 ω ∩ Fin))
86, 7syldan 595 . . . 4 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴𝐵) → (𝐵𝐴) ∈ (𝒫 ω ∩ Fin))
9 ffvelrn 6841 . . . 4 ((𝐹:(𝒫 ω ∩ Fin)⟶ω ∧ (𝐵𝐴) ∈ (𝒫 ω ∩ Fin)) → (𝐹‘(𝐵𝐴)) ∈ ω)
102, 8, 9sylancr 591 . . 3 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴𝐵) → (𝐹‘(𝐵𝐴)) ∈ ω)
11 nnaword1 8266 . . 3 (((𝐹𝐴) ∈ ω ∧ (𝐹‘(𝐵𝐴)) ∈ ω) → (𝐹𝐴) ⊆ ((𝐹𝐴) +o (𝐹‘(𝐵𝐴))))
125, 10, 11syl2anc 588 . 2 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴𝐵) → (𝐹𝐴) ⊆ ((𝐹𝐴) +o (𝐹‘(𝐵𝐴))))
13 disjdif 4369 . . . . 5 (𝐴 ∩ (𝐵𝐴)) = ∅
1413a1i 11 . . . 4 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴𝐵) → (𝐴 ∩ (𝐵𝐴)) = ∅)
151ackbij1lem9 9689 . . . 4 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ (𝐵𝐴) ∈ (𝒫 ω ∩ Fin) ∧ (𝐴 ∩ (𝐵𝐴)) = ∅) → (𝐹‘(𝐴 ∪ (𝐵𝐴))) = ((𝐹𝐴) +o (𝐹‘(𝐵𝐴))))
163, 8, 14, 15syl3anc 1369 . . 3 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴𝐵) → (𝐹‘(𝐴 ∪ (𝐵𝐴))) = ((𝐹𝐴) +o (𝐹‘(𝐵𝐴))))
17 undif 4379 . . . . . 6 (𝐴𝐵 ↔ (𝐴 ∪ (𝐵𝐴)) = 𝐵)
1817biimpi 219 . . . . 5 (𝐴𝐵 → (𝐴 ∪ (𝐵𝐴)) = 𝐵)
1918adantl 486 . . . 4 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴𝐵) → (𝐴 ∪ (𝐵𝐴)) = 𝐵)
2019fveq2d 6663 . . 3 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴𝐵) → (𝐹‘(𝐴 ∪ (𝐵𝐴))) = (𝐹𝐵))
2116, 20eqtr3d 2796 . 2 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴𝐵) → ((𝐹𝐴) +o (𝐹‘(𝐵𝐴))) = (𝐹𝐵))
2212, 21sseqtrd 3933 1 ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴𝐵) → (𝐹𝐴) ⊆ (𝐹𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 400   = wceq 1539   ∈ wcel 2112   ∖ cdif 3856   ∪ cun 3857   ∩ cin 3858   ⊆ wss 3859  ∅c0 4226  𝒫 cpw 4495  {csn 4523  ∪ ciun 4884   ↦ cmpt 5113   × cxp 5523  ⟶wf 6332  ‘cfv 6336  (class class class)co 7151  ωcom 7580   +o coa 8110  Fincfn 8528  cardccrd 9398 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-1st 7694  df-2nd 7695  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-oadd 8117  df-er 8300  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-dju 9364  df-card 9402 This theorem is referenced by:  ackbij1lem15  9695  ackbij1b  9700
 Copyright terms: Public domain W3C validator