Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ackbij1lem12 | Structured version Visualization version GIF version |
Description: Lemma for ackbij1 9925. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
Ref | Expression |
---|---|
ackbij.f | ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) |
Ref | Expression |
---|---|
ackbij1lem12 | ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐹‘𝐴) ⊆ (𝐹‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ackbij.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) | |
2 | 1 | ackbij1lem10 9916 | . . . 4 ⊢ 𝐹:(𝒫 ω ∩ Fin)⟶ω |
3 | 1 | ackbij1lem11 9917 | . . . 4 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → 𝐴 ∈ (𝒫 ω ∩ Fin)) |
4 | ffvelrn 6941 | . . . 4 ⊢ ((𝐹:(𝒫 ω ∩ Fin)⟶ω ∧ 𝐴 ∈ (𝒫 ω ∩ Fin)) → (𝐹‘𝐴) ∈ ω) | |
5 | 2, 3, 4 | sylancr 586 | . . 3 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐹‘𝐴) ∈ ω) |
6 | difssd 4063 | . . . . 5 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐵 ∖ 𝐴) ⊆ 𝐵) | |
7 | 1 | ackbij1lem11 9917 | . . . . 5 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐵 ∖ 𝐴) ⊆ 𝐵) → (𝐵 ∖ 𝐴) ∈ (𝒫 ω ∩ Fin)) |
8 | 6, 7 | syldan 590 | . . . 4 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐵 ∖ 𝐴) ∈ (𝒫 ω ∩ Fin)) |
9 | ffvelrn 6941 | . . . 4 ⊢ ((𝐹:(𝒫 ω ∩ Fin)⟶ω ∧ (𝐵 ∖ 𝐴) ∈ (𝒫 ω ∩ Fin)) → (𝐹‘(𝐵 ∖ 𝐴)) ∈ ω) | |
10 | 2, 8, 9 | sylancr 586 | . . 3 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐹‘(𝐵 ∖ 𝐴)) ∈ ω) |
11 | nnaword1 8422 | . . 3 ⊢ (((𝐹‘𝐴) ∈ ω ∧ (𝐹‘(𝐵 ∖ 𝐴)) ∈ ω) → (𝐹‘𝐴) ⊆ ((𝐹‘𝐴) +o (𝐹‘(𝐵 ∖ 𝐴)))) | |
12 | 5, 10, 11 | syl2anc 583 | . 2 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐹‘𝐴) ⊆ ((𝐹‘𝐴) +o (𝐹‘(𝐵 ∖ 𝐴)))) |
13 | disjdif 4402 | . . . . 5 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | |
14 | 13 | a1i 11 | . . . 4 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅) |
15 | 1 | ackbij1lem9 9915 | . . . 4 ⊢ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ (𝐵 ∖ 𝐴) ∈ (𝒫 ω ∩ Fin) ∧ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅) → (𝐹‘(𝐴 ∪ (𝐵 ∖ 𝐴))) = ((𝐹‘𝐴) +o (𝐹‘(𝐵 ∖ 𝐴)))) |
16 | 3, 8, 14, 15 | syl3anc 1369 | . . 3 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐹‘(𝐴 ∪ (𝐵 ∖ 𝐴))) = ((𝐹‘𝐴) +o (𝐹‘(𝐵 ∖ 𝐴)))) |
17 | undif 4412 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) | |
18 | 17 | biimpi 215 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) |
19 | 18 | adantl 481 | . . . 4 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) |
20 | 19 | fveq2d 6760 | . . 3 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐹‘(𝐴 ∪ (𝐵 ∖ 𝐴))) = (𝐹‘𝐵)) |
21 | 16, 20 | eqtr3d 2780 | . 2 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → ((𝐹‘𝐴) +o (𝐹‘(𝐵 ∖ 𝐴))) = (𝐹‘𝐵)) |
22 | 12, 21 | sseqtrd 3957 | 1 ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐹‘𝐴) ⊆ (𝐹‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ∪ cun 3881 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 {csn 4558 ∪ ciun 4921 ↦ cmpt 5153 × cxp 5578 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ωcom 7687 +o coa 8264 Fincfn 8691 cardccrd 9624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 |
This theorem is referenced by: ackbij1lem15 9921 ackbij1b 9926 |
Copyright terms: Public domain | W3C validator |