MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem10 Structured version   Visualization version   GIF version

Theorem ackbij1lem10 10266
Description: Lemma for ackbij1 10275. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1lem10 𝐹:(𝒫 ω ∩ Fin)⟶ω
Distinct variable group:   𝑥,𝐹,𝑦

Proof of Theorem ackbij1lem10
StepHypRef Expression
1 ackbij.f . 2 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
2 elinel2 4212 . . . 4 (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑥 ∈ Fin)
3 snfi 9082 . . . . . 6 {𝑦} ∈ Fin
4 elinel1 4211 . . . . . . . . . 10 (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑥 ∈ 𝒫 ω)
54elpwid 4614 . . . . . . . . 9 (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑥 ⊆ ω)
6 onfin2 9266 . . . . . . . . . 10 ω = (On ∩ Fin)
7 inss2 4246 . . . . . . . . . 10 (On ∩ Fin) ⊆ Fin
86, 7eqsstri 4030 . . . . . . . . 9 ω ⊆ Fin
95, 8sstrdi 4008 . . . . . . . 8 (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑥 ⊆ Fin)
109sselda 3995 . . . . . . 7 ((𝑥 ∈ (𝒫 ω ∩ Fin) ∧ 𝑦𝑥) → 𝑦 ∈ Fin)
11 pwfi 9355 . . . . . . 7 (𝑦 ∈ Fin ↔ 𝒫 𝑦 ∈ Fin)
1210, 11sylib 218 . . . . . 6 ((𝑥 ∈ (𝒫 ω ∩ Fin) ∧ 𝑦𝑥) → 𝒫 𝑦 ∈ Fin)
13 xpfi 9356 . . . . . 6 (({𝑦} ∈ Fin ∧ 𝒫 𝑦 ∈ Fin) → ({𝑦} × 𝒫 𝑦) ∈ Fin)
143, 12, 13sylancr 587 . . . . 5 ((𝑥 ∈ (𝒫 ω ∩ Fin) ∧ 𝑦𝑥) → ({𝑦} × 𝒫 𝑦) ∈ Fin)
1514ralrimiva 3144 . . . 4 (𝑥 ∈ (𝒫 ω ∩ Fin) → ∀𝑦𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin)
16 iunfi 9381 . . . 4 ((𝑥 ∈ Fin ∧ ∀𝑦𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin) → 𝑦𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin)
172, 15, 16syl2anc 584 . . 3 (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑦𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin)
18 ficardom 9999 . . 3 ( 𝑦𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin → (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)) ∈ ω)
1917, 18syl 17 . 2 (𝑥 ∈ (𝒫 ω ∩ Fin) → (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)) ∈ ω)
201, 19fmpti 7132 1 𝐹:(𝒫 ω ∩ Fin)⟶ω
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2106  wral 3059  cin 3962  𝒫 cpw 4605  {csn 4631   ciun 4996  cmpt 5231   × cxp 5687  Oncon0 6386  wf 6559  cfv 6563  ωcom 7887  Fincfn 8984  cardccrd 9973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-om 7888  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977
This theorem is referenced by:  ackbij1lem12  10268  ackbij1lem13  10269  ackbij1lem14  10270  ackbij1lem15  10271  ackbij1lem16  10272  ackbij1lem17  10273  ackbij1lem18  10274  ackbij1b  10276
  Copyright terms: Public domain W3C validator