![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ackbij1lem10 | Structured version Visualization version GIF version |
Description: Lemma for ackbij1 10275. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
Ref | Expression |
---|---|
ackbij.f | ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) |
Ref | Expression |
---|---|
ackbij1lem10 | ⊢ 𝐹:(𝒫 ω ∩ Fin)⟶ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ackbij.f | . 2 ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) | |
2 | elinel2 4212 | . . . 4 ⊢ (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑥 ∈ Fin) | |
3 | snfi 9082 | . . . . . 6 ⊢ {𝑦} ∈ Fin | |
4 | elinel1 4211 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑥 ∈ 𝒫 ω) | |
5 | 4 | elpwid 4614 | . . . . . . . . 9 ⊢ (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑥 ⊆ ω) |
6 | onfin2 9266 | . . . . . . . . . 10 ⊢ ω = (On ∩ Fin) | |
7 | inss2 4246 | . . . . . . . . . 10 ⊢ (On ∩ Fin) ⊆ Fin | |
8 | 6, 7 | eqsstri 4030 | . . . . . . . . 9 ⊢ ω ⊆ Fin |
9 | 5, 8 | sstrdi 4008 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑥 ⊆ Fin) |
10 | 9 | sselda 3995 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝒫 ω ∩ Fin) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ Fin) |
11 | pwfi 9355 | . . . . . . 7 ⊢ (𝑦 ∈ Fin ↔ 𝒫 𝑦 ∈ Fin) | |
12 | 10, 11 | sylib 218 | . . . . . 6 ⊢ ((𝑥 ∈ (𝒫 ω ∩ Fin) ∧ 𝑦 ∈ 𝑥) → 𝒫 𝑦 ∈ Fin) |
13 | xpfi 9356 | . . . . . 6 ⊢ (({𝑦} ∈ Fin ∧ 𝒫 𝑦 ∈ Fin) → ({𝑦} × 𝒫 𝑦) ∈ Fin) | |
14 | 3, 12, 13 | sylancr 587 | . . . . 5 ⊢ ((𝑥 ∈ (𝒫 ω ∩ Fin) ∧ 𝑦 ∈ 𝑥) → ({𝑦} × 𝒫 𝑦) ∈ Fin) |
15 | 14 | ralrimiva 3144 | . . . 4 ⊢ (𝑥 ∈ (𝒫 ω ∩ Fin) → ∀𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin) |
16 | iunfi 9381 | . . . 4 ⊢ ((𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin) → ∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin) | |
17 | 2, 15, 16 | syl2anc 584 | . . 3 ⊢ (𝑥 ∈ (𝒫 ω ∩ Fin) → ∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin) |
18 | ficardom 9999 | . . 3 ⊢ (∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin → (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦)) ∈ ω) | |
19 | 17, 18 | syl 17 | . 2 ⊢ (𝑥 ∈ (𝒫 ω ∩ Fin) → (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦)) ∈ ω) |
20 | 1, 19 | fmpti 7132 | 1 ⊢ 𝐹:(𝒫 ω ∩ Fin)⟶ω |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∩ cin 3962 𝒫 cpw 4605 {csn 4631 ∪ ciun 4996 ↦ cmpt 5231 × cxp 5687 Oncon0 6386 ⟶wf 6559 ‘cfv 6563 ωcom 7887 Fincfn 8984 cardccrd 9973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-om 7888 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-card 9977 |
This theorem is referenced by: ackbij1lem12 10268 ackbij1lem13 10269 ackbij1lem14 10270 ackbij1lem15 10271 ackbij1lem16 10272 ackbij1lem17 10273 ackbij1lem18 10274 ackbij1b 10276 |
Copyright terms: Public domain | W3C validator |