MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem10 Structured version   Visualization version   GIF version

Theorem ackbij1lem10 9985
Description: Lemma for ackbij1 9994. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1lem10 𝐹:(𝒫 ω ∩ Fin)⟶ω
Distinct variable group:   𝑥,𝐹,𝑦

Proof of Theorem ackbij1lem10
StepHypRef Expression
1 ackbij.f . 2 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
2 elinel2 4130 . . . 4 (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑥 ∈ Fin)
3 snfi 8834 . . . . . 6 {𝑦} ∈ Fin
4 elinel1 4129 . . . . . . . . . 10 (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑥 ∈ 𝒫 ω)
54elpwid 4544 . . . . . . . . 9 (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑥 ⊆ ω)
6 onfin2 9014 . . . . . . . . . 10 ω = (On ∩ Fin)
7 inss2 4163 . . . . . . . . . 10 (On ∩ Fin) ⊆ Fin
86, 7eqsstri 3955 . . . . . . . . 9 ω ⊆ Fin
95, 8sstrdi 3933 . . . . . . . 8 (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑥 ⊆ Fin)
109sselda 3921 . . . . . . 7 ((𝑥 ∈ (𝒫 ω ∩ Fin) ∧ 𝑦𝑥) → 𝑦 ∈ Fin)
11 pwfi 8961 . . . . . . 7 (𝑦 ∈ Fin ↔ 𝒫 𝑦 ∈ Fin)
1210, 11sylib 217 . . . . . 6 ((𝑥 ∈ (𝒫 ω ∩ Fin) ∧ 𝑦𝑥) → 𝒫 𝑦 ∈ Fin)
13 xpfi 9085 . . . . . 6 (({𝑦} ∈ Fin ∧ 𝒫 𝑦 ∈ Fin) → ({𝑦} × 𝒫 𝑦) ∈ Fin)
143, 12, 13sylancr 587 . . . . 5 ((𝑥 ∈ (𝒫 ω ∩ Fin) ∧ 𝑦𝑥) → ({𝑦} × 𝒫 𝑦) ∈ Fin)
1514ralrimiva 3103 . . . 4 (𝑥 ∈ (𝒫 ω ∩ Fin) → ∀𝑦𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin)
16 iunfi 9107 . . . 4 ((𝑥 ∈ Fin ∧ ∀𝑦𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin) → 𝑦𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin)
172, 15, 16syl2anc 584 . . 3 (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑦𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin)
18 ficardom 9719 . . 3 ( 𝑦𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin → (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)) ∈ ω)
1917, 18syl 17 . 2 (𝑥 ∈ (𝒫 ω ∩ Fin) → (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)) ∈ ω)
201, 19fmpti 6986 1 𝐹:(𝒫 ω ∩ Fin)⟶ω
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wcel 2106  wral 3064  cin 3886  𝒫 cpw 4533  {csn 4561   ciun 4924  cmpt 5157   × cxp 5587  Oncon0 6266  wf 6429  cfv 6433  ωcom 7712  Fincfn 8733  cardccrd 9693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1st 7831  df-2nd 7832  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697
This theorem is referenced by:  ackbij1lem12  9987  ackbij1lem13  9988  ackbij1lem14  9989  ackbij1lem15  9990  ackbij1lem16  9991  ackbij1lem17  9992  ackbij1lem18  9993  ackbij1b  9995
  Copyright terms: Public domain W3C validator