Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ackbij1lem10 | Structured version Visualization version GIF version |
Description: Lemma for ackbij1 9994. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
Ref | Expression |
---|---|
ackbij.f | ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) |
Ref | Expression |
---|---|
ackbij1lem10 | ⊢ 𝐹:(𝒫 ω ∩ Fin)⟶ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ackbij.f | . 2 ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) | |
2 | elinel2 4130 | . . . 4 ⊢ (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑥 ∈ Fin) | |
3 | snfi 8834 | . . . . . 6 ⊢ {𝑦} ∈ Fin | |
4 | elinel1 4129 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑥 ∈ 𝒫 ω) | |
5 | 4 | elpwid 4544 | . . . . . . . . 9 ⊢ (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑥 ⊆ ω) |
6 | onfin2 9014 | . . . . . . . . . 10 ⊢ ω = (On ∩ Fin) | |
7 | inss2 4163 | . . . . . . . . . 10 ⊢ (On ∩ Fin) ⊆ Fin | |
8 | 6, 7 | eqsstri 3955 | . . . . . . . . 9 ⊢ ω ⊆ Fin |
9 | 5, 8 | sstrdi 3933 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑥 ⊆ Fin) |
10 | 9 | sselda 3921 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝒫 ω ∩ Fin) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ Fin) |
11 | pwfi 8961 | . . . . . . 7 ⊢ (𝑦 ∈ Fin ↔ 𝒫 𝑦 ∈ Fin) | |
12 | 10, 11 | sylib 217 | . . . . . 6 ⊢ ((𝑥 ∈ (𝒫 ω ∩ Fin) ∧ 𝑦 ∈ 𝑥) → 𝒫 𝑦 ∈ Fin) |
13 | xpfi 9085 | . . . . . 6 ⊢ (({𝑦} ∈ Fin ∧ 𝒫 𝑦 ∈ Fin) → ({𝑦} × 𝒫 𝑦) ∈ Fin) | |
14 | 3, 12, 13 | sylancr 587 | . . . . 5 ⊢ ((𝑥 ∈ (𝒫 ω ∩ Fin) ∧ 𝑦 ∈ 𝑥) → ({𝑦} × 𝒫 𝑦) ∈ Fin) |
15 | 14 | ralrimiva 3103 | . . . 4 ⊢ (𝑥 ∈ (𝒫 ω ∩ Fin) → ∀𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin) |
16 | iunfi 9107 | . . . 4 ⊢ ((𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin) → ∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin) | |
17 | 2, 15, 16 | syl2anc 584 | . . 3 ⊢ (𝑥 ∈ (𝒫 ω ∩ Fin) → ∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin) |
18 | ficardom 9719 | . . 3 ⊢ (∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin → (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦)) ∈ ω) | |
19 | 17, 18 | syl 17 | . 2 ⊢ (𝑥 ∈ (𝒫 ω ∩ Fin) → (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦)) ∈ ω) |
20 | 1, 19 | fmpti 6986 | 1 ⊢ 𝐹:(𝒫 ω ∩ Fin)⟶ω |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∩ cin 3886 𝒫 cpw 4533 {csn 4561 ∪ ciun 4924 ↦ cmpt 5157 × cxp 5587 Oncon0 6266 ⟶wf 6429 ‘cfv 6433 ωcom 7712 Fincfn 8733 cardccrd 9693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-om 7713 df-1st 7831 df-2nd 7832 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 |
This theorem is referenced by: ackbij1lem12 9987 ackbij1lem13 9988 ackbij1lem14 9989 ackbij1lem15 9990 ackbij1lem16 9991 ackbij1lem17 9992 ackbij1lem18 9993 ackbij1b 9995 |
Copyright terms: Public domain | W3C validator |