MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem10 Structured version   Visualization version   GIF version

Theorem ackbij1lem10 10268
Description: Lemma for ackbij1 10277. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1lem10 𝐹:(𝒫 ω ∩ Fin)⟶ω
Distinct variable group:   𝑥,𝐹,𝑦

Proof of Theorem ackbij1lem10
StepHypRef Expression
1 ackbij.f . 2 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
2 elinel2 4202 . . . 4 (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑥 ∈ Fin)
3 snfi 9083 . . . . . 6 {𝑦} ∈ Fin
4 elinel1 4201 . . . . . . . . . 10 (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑥 ∈ 𝒫 ω)
54elpwid 4609 . . . . . . . . 9 (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑥 ⊆ ω)
6 onfin2 9268 . . . . . . . . . 10 ω = (On ∩ Fin)
7 inss2 4238 . . . . . . . . . 10 (On ∩ Fin) ⊆ Fin
86, 7eqsstri 4030 . . . . . . . . 9 ω ⊆ Fin
95, 8sstrdi 3996 . . . . . . . 8 (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑥 ⊆ Fin)
109sselda 3983 . . . . . . 7 ((𝑥 ∈ (𝒫 ω ∩ Fin) ∧ 𝑦𝑥) → 𝑦 ∈ Fin)
11 pwfi 9357 . . . . . . 7 (𝑦 ∈ Fin ↔ 𝒫 𝑦 ∈ Fin)
1210, 11sylib 218 . . . . . 6 ((𝑥 ∈ (𝒫 ω ∩ Fin) ∧ 𝑦𝑥) → 𝒫 𝑦 ∈ Fin)
13 xpfi 9358 . . . . . 6 (({𝑦} ∈ Fin ∧ 𝒫 𝑦 ∈ Fin) → ({𝑦} × 𝒫 𝑦) ∈ Fin)
143, 12, 13sylancr 587 . . . . 5 ((𝑥 ∈ (𝒫 ω ∩ Fin) ∧ 𝑦𝑥) → ({𝑦} × 𝒫 𝑦) ∈ Fin)
1514ralrimiva 3146 . . . 4 (𝑥 ∈ (𝒫 ω ∩ Fin) → ∀𝑦𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin)
16 iunfi 9383 . . . 4 ((𝑥 ∈ Fin ∧ ∀𝑦𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin) → 𝑦𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin)
172, 15, 16syl2anc 584 . . 3 (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑦𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin)
18 ficardom 10001 . . 3 ( 𝑦𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin → (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)) ∈ ω)
1917, 18syl 17 . 2 (𝑥 ∈ (𝒫 ω ∩ Fin) → (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)) ∈ ω)
201, 19fmpti 7132 1 𝐹:(𝒫 ω ∩ Fin)⟶ω
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2108  wral 3061  cin 3950  𝒫 cpw 4600  {csn 4626   ciun 4991  cmpt 5225   × cxp 5683  Oncon0 6384  wf 6557  cfv 6561  ωcom 7887  Fincfn 8985  cardccrd 9975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-om 7888  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979
This theorem is referenced by:  ackbij1lem12  10270  ackbij1lem13  10271  ackbij1lem14  10272  ackbij1lem15  10273  ackbij1lem16  10274  ackbij1lem17  10275  ackbij1lem18  10276  ackbij1b  10278
  Copyright terms: Public domain W3C validator