![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ackbij1lem10 | Structured version Visualization version GIF version |
Description: Lemma for ackbij1 10259. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
Ref | Expression |
---|---|
ackbij.f | β’ πΉ = (π₯ β (π« Ο β© Fin) β¦ (cardββͺ π¦ β π₯ ({π¦} Γ π« π¦))) |
Ref | Expression |
---|---|
ackbij1lem10 | β’ πΉ:(π« Ο β© Fin)βΆΟ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ackbij.f | . 2 β’ πΉ = (π₯ β (π« Ο β© Fin) β¦ (cardββͺ π¦ β π₯ ({π¦} Γ π« π¦))) | |
2 | elinel2 4190 | . . . 4 β’ (π₯ β (π« Ο β© Fin) β π₯ β Fin) | |
3 | snfi 9065 | . . . . . 6 β’ {π¦} β Fin | |
4 | elinel1 4189 | . . . . . . . . . 10 β’ (π₯ β (π« Ο β© Fin) β π₯ β π« Ο) | |
5 | 4 | elpwid 4607 | . . . . . . . . 9 β’ (π₯ β (π« Ο β© Fin) β π₯ β Ο) |
6 | onfin2 9252 | . . . . . . . . . 10 β’ Ο = (On β© Fin) | |
7 | inss2 4224 | . . . . . . . . . 10 β’ (On β© Fin) β Fin | |
8 | 6, 7 | eqsstri 4007 | . . . . . . . . 9 β’ Ο β Fin |
9 | 5, 8 | sstrdi 3985 | . . . . . . . 8 β’ (π₯ β (π« Ο β© Fin) β π₯ β Fin) |
10 | 9 | sselda 3972 | . . . . . . 7 β’ ((π₯ β (π« Ο β© Fin) β§ π¦ β π₯) β π¦ β Fin) |
11 | pwfi 9199 | . . . . . . 7 β’ (π¦ β Fin β π« π¦ β Fin) | |
12 | 10, 11 | sylib 217 | . . . . . 6 β’ ((π₯ β (π« Ο β© Fin) β§ π¦ β π₯) β π« π¦ β Fin) |
13 | xpfi 9339 | . . . . . 6 β’ (({π¦} β Fin β§ π« π¦ β Fin) β ({π¦} Γ π« π¦) β Fin) | |
14 | 3, 12, 13 | sylancr 585 | . . . . 5 β’ ((π₯ β (π« Ο β© Fin) β§ π¦ β π₯) β ({π¦} Γ π« π¦) β Fin) |
15 | 14 | ralrimiva 3136 | . . . 4 β’ (π₯ β (π« Ο β© Fin) β βπ¦ β π₯ ({π¦} Γ π« π¦) β Fin) |
16 | iunfi 9362 | . . . 4 β’ ((π₯ β Fin β§ βπ¦ β π₯ ({π¦} Γ π« π¦) β Fin) β βͺ π¦ β π₯ ({π¦} Γ π« π¦) β Fin) | |
17 | 2, 15, 16 | syl2anc 582 | . . 3 β’ (π₯ β (π« Ο β© Fin) β βͺ π¦ β π₯ ({π¦} Γ π« π¦) β Fin) |
18 | ficardom 9982 | . . 3 β’ (βͺ π¦ β π₯ ({π¦} Γ π« π¦) β Fin β (cardββͺ π¦ β π₯ ({π¦} Γ π« π¦)) β Ο) | |
19 | 17, 18 | syl 17 | . 2 β’ (π₯ β (π« Ο β© Fin) β (cardββͺ π¦ β π₯ ({π¦} Γ π« π¦)) β Ο) |
20 | 1, 19 | fmpti 7116 | 1 β’ πΉ:(π« Ο β© Fin)βΆΟ |
Colors of variables: wff setvar class |
Syntax hints: β§ wa 394 = wceq 1533 β wcel 2098 βwral 3051 β© cin 3939 π« cpw 4598 {csn 4624 βͺ ciun 4991 β¦ cmpt 5226 Γ cxp 5670 Oncon0 6364 βΆwf 6538 βcfv 6542 Οcom 7867 Fincfn 8960 cardccrd 9956 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-om 7868 df-1o 8483 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-card 9960 |
This theorem is referenced by: ackbij1lem12 10252 ackbij1lem13 10253 ackbij1lem14 10254 ackbij1lem15 10255 ackbij1lem16 10256 ackbij1lem17 10257 ackbij1lem18 10258 ackbij1b 10260 |
Copyright terms: Public domain | W3C validator |