MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem10 Structured version   Visualization version   GIF version

Theorem ackbij1lem10 10122
Description: Lemma for ackbij1 10131. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1lem10 𝐹:(𝒫 ω ∩ Fin)⟶ω
Distinct variable group:   𝑥,𝐹,𝑦

Proof of Theorem ackbij1lem10
StepHypRef Expression
1 ackbij.f . 2 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
2 elinel2 4153 . . . 4 (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑥 ∈ Fin)
3 snfi 8968 . . . . . 6 {𝑦} ∈ Fin
4 elinel1 4152 . . . . . . . . . 10 (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑥 ∈ 𝒫 ω)
54elpwid 4560 . . . . . . . . 9 (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑥 ⊆ ω)
6 onfin2 9130 . . . . . . . . . 10 ω = (On ∩ Fin)
7 inss2 4189 . . . . . . . . . 10 (On ∩ Fin) ⊆ Fin
86, 7eqsstri 3982 . . . . . . . . 9 ω ⊆ Fin
95, 8sstrdi 3948 . . . . . . . 8 (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑥 ⊆ Fin)
109sselda 3935 . . . . . . 7 ((𝑥 ∈ (𝒫 ω ∩ Fin) ∧ 𝑦𝑥) → 𝑦 ∈ Fin)
11 pwfi 9208 . . . . . . 7 (𝑦 ∈ Fin ↔ 𝒫 𝑦 ∈ Fin)
1210, 11sylib 218 . . . . . 6 ((𝑥 ∈ (𝒫 ω ∩ Fin) ∧ 𝑦𝑥) → 𝒫 𝑦 ∈ Fin)
13 xpfi 9209 . . . . . 6 (({𝑦} ∈ Fin ∧ 𝒫 𝑦 ∈ Fin) → ({𝑦} × 𝒫 𝑦) ∈ Fin)
143, 12, 13sylancr 587 . . . . 5 ((𝑥 ∈ (𝒫 ω ∩ Fin) ∧ 𝑦𝑥) → ({𝑦} × 𝒫 𝑦) ∈ Fin)
1514ralrimiva 3121 . . . 4 (𝑥 ∈ (𝒫 ω ∩ Fin) → ∀𝑦𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin)
16 iunfi 9233 . . . 4 ((𝑥 ∈ Fin ∧ ∀𝑦𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin) → 𝑦𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin)
172, 15, 16syl2anc 584 . . 3 (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑦𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin)
18 ficardom 9857 . . 3 ( 𝑦𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin → (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)) ∈ ω)
1917, 18syl 17 . 2 (𝑥 ∈ (𝒫 ω ∩ Fin) → (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)) ∈ ω)
201, 19fmpti 7046 1 𝐹:(𝒫 ω ∩ Fin)⟶ω
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wral 3044  cin 3902  𝒫 cpw 4551  {csn 4577   ciun 4941  cmpt 5173   × cxp 5617  Oncon0 6307  wf 6478  cfv 6482  ωcom 7799  Fincfn 8872  cardccrd 9831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-om 7800  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-card 9835
This theorem is referenced by:  ackbij1lem12  10124  ackbij1lem13  10125  ackbij1lem14  10126  ackbij1lem15  10127  ackbij1lem16  10128  ackbij1lem17  10129  ackbij1lem18  10130  ackbij1b  10132
  Copyright terms: Public domain W3C validator