Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ackbij1lem10 | Structured version Visualization version GIF version |
Description: Lemma for ackbij1 9925. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
Ref | Expression |
---|---|
ackbij.f | ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) |
Ref | Expression |
---|---|
ackbij1lem10 | ⊢ 𝐹:(𝒫 ω ∩ Fin)⟶ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ackbij.f | . 2 ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) | |
2 | elinel2 4126 | . . . 4 ⊢ (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑥 ∈ Fin) | |
3 | snfi 8788 | . . . . . 6 ⊢ {𝑦} ∈ Fin | |
4 | elinel1 4125 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑥 ∈ 𝒫 ω) | |
5 | 4 | elpwid 4541 | . . . . . . . . 9 ⊢ (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑥 ⊆ ω) |
6 | onfin2 8945 | . . . . . . . . . 10 ⊢ ω = (On ∩ Fin) | |
7 | inss2 4160 | . . . . . . . . . 10 ⊢ (On ∩ Fin) ⊆ Fin | |
8 | 6, 7 | eqsstri 3951 | . . . . . . . . 9 ⊢ ω ⊆ Fin |
9 | 5, 8 | sstrdi 3929 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑥 ⊆ Fin) |
10 | 9 | sselda 3917 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝒫 ω ∩ Fin) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ Fin) |
11 | pwfi 8923 | . . . . . . 7 ⊢ (𝑦 ∈ Fin ↔ 𝒫 𝑦 ∈ Fin) | |
12 | 10, 11 | sylib 217 | . . . . . 6 ⊢ ((𝑥 ∈ (𝒫 ω ∩ Fin) ∧ 𝑦 ∈ 𝑥) → 𝒫 𝑦 ∈ Fin) |
13 | xpfi 9015 | . . . . . 6 ⊢ (({𝑦} ∈ Fin ∧ 𝒫 𝑦 ∈ Fin) → ({𝑦} × 𝒫 𝑦) ∈ Fin) | |
14 | 3, 12, 13 | sylancr 586 | . . . . 5 ⊢ ((𝑥 ∈ (𝒫 ω ∩ Fin) ∧ 𝑦 ∈ 𝑥) → ({𝑦} × 𝒫 𝑦) ∈ Fin) |
15 | 14 | ralrimiva 3107 | . . . 4 ⊢ (𝑥 ∈ (𝒫 ω ∩ Fin) → ∀𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin) |
16 | iunfi 9037 | . . . 4 ⊢ ((𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin) → ∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin) | |
17 | 2, 15, 16 | syl2anc 583 | . . 3 ⊢ (𝑥 ∈ (𝒫 ω ∩ Fin) → ∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin) |
18 | ficardom 9650 | . . 3 ⊢ (∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin → (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦)) ∈ ω) | |
19 | 17, 18 | syl 17 | . 2 ⊢ (𝑥 ∈ (𝒫 ω ∩ Fin) → (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦)) ∈ ω) |
20 | 1, 19 | fmpti 6968 | 1 ⊢ 𝐹:(𝒫 ω ∩ Fin)⟶ω |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∩ cin 3882 𝒫 cpw 4530 {csn 4558 ∪ ciun 4921 ↦ cmpt 5153 × cxp 5578 Oncon0 6251 ⟶wf 6414 ‘cfv 6418 ωcom 7687 Fincfn 8691 cardccrd 9624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-1st 7804 df-2nd 7805 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 |
This theorem is referenced by: ackbij1lem12 9918 ackbij1lem13 9919 ackbij1lem14 9920 ackbij1lem15 9921 ackbij1lem16 9922 ackbij1lem17 9923 ackbij1lem18 9924 ackbij1b 9926 |
Copyright terms: Public domain | W3C validator |