| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ackbij1lem10 | Structured version Visualization version GIF version | ||
| Description: Lemma for ackbij1 10256. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
| Ref | Expression |
|---|---|
| ackbij.f | ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) |
| Ref | Expression |
|---|---|
| ackbij1lem10 | ⊢ 𝐹:(𝒫 ω ∩ Fin)⟶ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackbij.f | . 2 ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) | |
| 2 | elinel2 4182 | . . . 4 ⊢ (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑥 ∈ Fin) | |
| 3 | snfi 9062 | . . . . . 6 ⊢ {𝑦} ∈ Fin | |
| 4 | elinel1 4181 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑥 ∈ 𝒫 ω) | |
| 5 | 4 | elpwid 4589 | . . . . . . . . 9 ⊢ (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑥 ⊆ ω) |
| 6 | onfin2 9245 | . . . . . . . . . 10 ⊢ ω = (On ∩ Fin) | |
| 7 | inss2 4218 | . . . . . . . . . 10 ⊢ (On ∩ Fin) ⊆ Fin | |
| 8 | 6, 7 | eqsstri 4010 | . . . . . . . . 9 ⊢ ω ⊆ Fin |
| 9 | 5, 8 | sstrdi 3976 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑥 ⊆ Fin) |
| 10 | 9 | sselda 3963 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝒫 ω ∩ Fin) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ Fin) |
| 11 | pwfi 9334 | . . . . . . 7 ⊢ (𝑦 ∈ Fin ↔ 𝒫 𝑦 ∈ Fin) | |
| 12 | 10, 11 | sylib 218 | . . . . . 6 ⊢ ((𝑥 ∈ (𝒫 ω ∩ Fin) ∧ 𝑦 ∈ 𝑥) → 𝒫 𝑦 ∈ Fin) |
| 13 | xpfi 9335 | . . . . . 6 ⊢ (({𝑦} ∈ Fin ∧ 𝒫 𝑦 ∈ Fin) → ({𝑦} × 𝒫 𝑦) ∈ Fin) | |
| 14 | 3, 12, 13 | sylancr 587 | . . . . 5 ⊢ ((𝑥 ∈ (𝒫 ω ∩ Fin) ∧ 𝑦 ∈ 𝑥) → ({𝑦} × 𝒫 𝑦) ∈ Fin) |
| 15 | 14 | ralrimiva 3133 | . . . 4 ⊢ (𝑥 ∈ (𝒫 ω ∩ Fin) → ∀𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin) |
| 16 | iunfi 9360 | . . . 4 ⊢ ((𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin) → ∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin) | |
| 17 | 2, 15, 16 | syl2anc 584 | . . 3 ⊢ (𝑥 ∈ (𝒫 ω ∩ Fin) → ∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin) |
| 18 | ficardom 9980 | . . 3 ⊢ (∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin → (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦)) ∈ ω) | |
| 19 | 17, 18 | syl 17 | . 2 ⊢ (𝑥 ∈ (𝒫 ω ∩ Fin) → (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦)) ∈ ω) |
| 20 | 1, 19 | fmpti 7107 | 1 ⊢ 𝐹:(𝒫 ω ∩ Fin)⟶ω |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∩ cin 3930 𝒫 cpw 4580 {csn 4606 ∪ ciun 4972 ↦ cmpt 5206 × cxp 5657 Oncon0 6357 ⟶wf 6532 ‘cfv 6536 ωcom 7866 Fincfn 8964 cardccrd 9954 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-om 7867 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9958 |
| This theorem is referenced by: ackbij1lem12 10249 ackbij1lem13 10250 ackbij1lem14 10251 ackbij1lem15 10252 ackbij1lem16 10253 ackbij1lem17 10254 ackbij1lem18 10255 ackbij1b 10257 |
| Copyright terms: Public domain | W3C validator |