MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem10 Structured version   Visualization version   GIF version

Theorem ackbij1lem10 9502
Description: Lemma for ackbij1 9511. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1lem10 𝐹:(𝒫 ω ∩ Fin)⟶ω
Distinct variable group:   𝑥,𝐹,𝑦

Proof of Theorem ackbij1lem10
StepHypRef Expression
1 ackbij.f . 2 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
2 elinel2 4098 . . . 4 (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑥 ∈ Fin)
3 snfi 8447 . . . . . 6 {𝑦} ∈ Fin
4 elinel1 4097 . . . . . . . . . 10 (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑥 ∈ 𝒫 ω)
54elpwid 4469 . . . . . . . . 9 (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑥 ⊆ ω)
6 onfin2 8561 . . . . . . . . . 10 ω = (On ∩ Fin)
7 inss2 4130 . . . . . . . . . 10 (On ∩ Fin) ⊆ Fin
86, 7eqsstri 3926 . . . . . . . . 9 ω ⊆ Fin
95, 8syl6ss 3905 . . . . . . . 8 (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑥 ⊆ Fin)
109sselda 3893 . . . . . . 7 ((𝑥 ∈ (𝒫 ω ∩ Fin) ∧ 𝑦𝑥) → 𝑦 ∈ Fin)
11 pwfi 8670 . . . . . . 7 (𝑦 ∈ Fin ↔ 𝒫 𝑦 ∈ Fin)
1210, 11sylib 219 . . . . . 6 ((𝑥 ∈ (𝒫 ω ∩ Fin) ∧ 𝑦𝑥) → 𝒫 𝑦 ∈ Fin)
13 xpfi 8640 . . . . . 6 (({𝑦} ∈ Fin ∧ 𝒫 𝑦 ∈ Fin) → ({𝑦} × 𝒫 𝑦) ∈ Fin)
143, 12, 13sylancr 587 . . . . 5 ((𝑥 ∈ (𝒫 ω ∩ Fin) ∧ 𝑦𝑥) → ({𝑦} × 𝒫 𝑦) ∈ Fin)
1514ralrimiva 3149 . . . 4 (𝑥 ∈ (𝒫 ω ∩ Fin) → ∀𝑦𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin)
16 iunfi 8663 . . . 4 ((𝑥 ∈ Fin ∧ ∀𝑦𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin) → 𝑦𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin)
172, 15, 16syl2anc 584 . . 3 (𝑥 ∈ (𝒫 ω ∩ Fin) → 𝑦𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin)
18 ficardom 9241 . . 3 ( 𝑦𝑥 ({𝑦} × 𝒫 𝑦) ∈ Fin → (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)) ∈ ω)
1917, 18syl 17 . 2 (𝑥 ∈ (𝒫 ω ∩ Fin) → (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)) ∈ ω)
201, 19fmpti 6744 1 𝐹:(𝒫 ω ∩ Fin)⟶ω
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1522  wcel 2081  wral 3105  cin 3862  𝒫 cpw 4457  {csn 4476   ciun 4829  cmpt 5045   × cxp 5446  Oncon0 6071  wf 6226  cfv 6230  ωcom 7441  Fincfn 8362  cardccrd 9215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-pss 3880  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-tp 4481  df-op 4483  df-uni 4750  df-int 4787  df-iun 4831  df-br 4967  df-opab 5029  df-mpt 5046  df-tr 5069  df-id 5353  df-eprel 5358  df-po 5367  df-so 5368  df-fr 5407  df-we 5409  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-pred 6028  df-ord 6074  df-on 6075  df-lim 6076  df-suc 6077  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-ov 7024  df-oprab 7025  df-mpo 7026  df-om 7442  df-1st 7550  df-2nd 7551  df-wrecs 7803  df-recs 7865  df-rdg 7903  df-1o 7958  df-2o 7959  df-oadd 7962  df-er 8144  df-map 8263  df-en 8363  df-dom 8364  df-sdom 8365  df-fin 8366  df-card 9219
This theorem is referenced by:  ackbij1lem12  9504  ackbij1lem13  9505  ackbij1lem14  9506  ackbij1lem15  9507  ackbij1lem16  9508  ackbij1lem17  9509  ackbij1lem18  9510  ackbij1b  9512
  Copyright terms: Public domain W3C validator