MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addlelt Structured version   Visualization version   GIF version

Theorem addlelt 12917
Description: If the sum of a real number and a positive real number is less than or equal to a third real number, the first real number is less than the third real number. (Contributed by AV, 1-Jul-2021.)
Assertion
Ref Expression
addlelt ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → ((𝑀 + 𝐴) ≤ 𝑁𝑀 < 𝑁))

Proof of Theorem addlelt
StepHypRef Expression
1 rpgt0 12815 . . . 4 (𝐴 ∈ ℝ+ → 0 < 𝐴)
213ad2ant3 1134 . . 3 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 0 < 𝐴)
3 rpre 12811 . . . . 5 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
433ad2ant3 1134 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 𝐴 ∈ ℝ)
5 simp1 1135 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 𝑀 ∈ ℝ)
64, 5ltaddposd 11632 . . 3 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → (0 < 𝐴𝑀 < (𝑀 + 𝐴)))
72, 6mpbid 231 . 2 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 𝑀 < (𝑀 + 𝐴))
8 simpl 483 . . . . 5 ((𝑀 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 𝑀 ∈ ℝ)
93adantl 482 . . . . 5 ((𝑀 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 𝐴 ∈ ℝ)
108, 9readdcld 11077 . . . 4 ((𝑀 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → (𝑀 + 𝐴) ∈ ℝ)
11103adant2 1130 . . 3 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → (𝑀 + 𝐴) ∈ ℝ)
12 simp2 1136 . . 3 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 𝑁 ∈ ℝ)
13 ltletr 11140 . . 3 ((𝑀 ∈ ℝ ∧ (𝑀 + 𝐴) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 < (𝑀 + 𝐴) ∧ (𝑀 + 𝐴) ≤ 𝑁) → 𝑀 < 𝑁))
145, 11, 12, 13syl3anc 1370 . 2 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → ((𝑀 < (𝑀 + 𝐴) ∧ (𝑀 + 𝐴) ≤ 𝑁) → 𝑀 < 𝑁))
157, 14mpand 692 1 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → ((𝑀 + 𝐴) ≤ 𝑁𝑀 < 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wcel 2105   class class class wbr 5087  (class class class)co 7315  cr 10943  0cc0 10944   + caddc 10947   < clt 11082  cle 11083  +crp 12803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7628  ax-resscn 11001  ax-1cn 11002  ax-icn 11003  ax-addcl 11004  ax-addrcl 11005  ax-mulcl 11006  ax-mulrcl 11007  ax-mulcom 11008  ax-addass 11009  ax-mulass 11010  ax-distr 11011  ax-i2m1 11012  ax-1ne0 11013  ax-1rid 11014  ax-rnegex 11015  ax-rrecex 11016  ax-cnre 11017  ax-pre-lttri 11018  ax-pre-lttrn 11019  ax-pre-ltadd 11020
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-br 5088  df-opab 5150  df-mpt 5171  df-id 5507  df-po 5521  df-so 5522  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-ov 7318  df-er 8546  df-en 8782  df-dom 8783  df-sdom 8784  df-pnf 11084  df-mnf 11085  df-xr 11086  df-ltxr 11087  df-le 11088  df-rp 12804
This theorem is referenced by:  zltaddlt1le  13310
  Copyright terms: Public domain W3C validator