Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addlelt | Structured version Visualization version GIF version |
Description: If the sum of a real number and a positive real number is less than or equal to a third real number, the first real number is less than the third real number. (Contributed by AV, 1-Jul-2021.) |
Ref | Expression |
---|---|
addlelt | ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → ((𝑀 + 𝐴) ≤ 𝑁 → 𝑀 < 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpgt0 12815 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
2 | 1 | 3ad2ant3 1134 | . . 3 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 0 < 𝐴) |
3 | rpre 12811 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
4 | 3 | 3ad2ant3 1134 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 𝐴 ∈ ℝ) |
5 | simp1 1135 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 𝑀 ∈ ℝ) | |
6 | 4, 5 | ltaddposd 11632 | . . 3 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → (0 < 𝐴 ↔ 𝑀 < (𝑀 + 𝐴))) |
7 | 2, 6 | mpbid 231 | . 2 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 𝑀 < (𝑀 + 𝐴)) |
8 | simpl 483 | . . . . 5 ⊢ ((𝑀 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 𝑀 ∈ ℝ) | |
9 | 3 | adantl 482 | . . . . 5 ⊢ ((𝑀 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 𝐴 ∈ ℝ) |
10 | 8, 9 | readdcld 11077 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → (𝑀 + 𝐴) ∈ ℝ) |
11 | 10 | 3adant2 1130 | . . 3 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → (𝑀 + 𝐴) ∈ ℝ) |
12 | simp2 1136 | . . 3 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → 𝑁 ∈ ℝ) | |
13 | ltletr 11140 | . . 3 ⊢ ((𝑀 ∈ ℝ ∧ (𝑀 + 𝐴) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 < (𝑀 + 𝐴) ∧ (𝑀 + 𝐴) ≤ 𝑁) → 𝑀 < 𝑁)) | |
14 | 5, 11, 12, 13 | syl3anc 1370 | . 2 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → ((𝑀 < (𝑀 + 𝐴) ∧ (𝑀 + 𝐴) ≤ 𝑁) → 𝑀 < 𝑁)) |
15 | 7, 14 | mpand 692 | 1 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → ((𝑀 + 𝐴) ≤ 𝑁 → 𝑀 < 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2105 class class class wbr 5087 (class class class)co 7315 ℝcr 10943 0cc0 10944 + caddc 10947 < clt 11082 ≤ cle 11083 ℝ+crp 12803 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-po 5521 df-so 5522 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-ov 7318 df-er 8546 df-en 8782 df-dom 8783 df-sdom 8784 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-rp 12804 |
This theorem is referenced by: zltaddlt1le 13310 |
Copyright terms: Public domain | W3C validator |