Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zltaddlt1le | Structured version Visualization version GIF version |
Description: The sum of an integer and a real number between 0 and 1 is less than or equal to a second integer iff the sum is less than the second integer. (Contributed by AV, 1-Jul-2021.) |
Ref | Expression |
---|---|
zltaddlt1le | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → ((𝑀 + 𝐴) < 𝑁 ↔ (𝑀 + 𝐴) ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 12323 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
2 | 1 | adantr 481 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → 𝑀 ∈ ℝ) |
3 | elioore 13109 | . . . . . 6 ⊢ (𝐴 ∈ (0(,)1) → 𝐴 ∈ ℝ) | |
4 | 3 | adantl 482 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → 𝐴 ∈ ℝ) |
5 | 2, 4 | readdcld 11004 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → (𝑀 + 𝐴) ∈ ℝ) |
6 | 5 | 3adant2 1130 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → (𝑀 + 𝐴) ∈ ℝ) |
7 | zre 12323 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
8 | 7 | 3ad2ant2 1133 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → 𝑁 ∈ ℝ) |
9 | ltle 11063 | . . 3 ⊢ (((𝑀 + 𝐴) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 + 𝐴) < 𝑁 → (𝑀 + 𝐴) ≤ 𝑁)) | |
10 | 6, 8, 9 | syl2anc 584 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → ((𝑀 + 𝐴) < 𝑁 → (𝑀 + 𝐴) ≤ 𝑁)) |
11 | elioo3g 13108 | . . . . . 6 ⊢ (𝐴 ∈ (0(,)1) ↔ ((0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) ∧ (0 < 𝐴 ∧ 𝐴 < 1))) | |
12 | simpl 483 | . . . . . 6 ⊢ ((0 < 𝐴 ∧ 𝐴 < 1) → 0 < 𝐴) | |
13 | 11, 12 | simplbiim 505 | . . . . 5 ⊢ (𝐴 ∈ (0(,)1) → 0 < 𝐴) |
14 | 3, 13 | elrpd 12769 | . . . 4 ⊢ (𝐴 ∈ (0(,)1) → 𝐴 ∈ ℝ+) |
15 | addlelt 12844 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → ((𝑀 + 𝐴) ≤ 𝑁 → 𝑀 < 𝑁)) | |
16 | 1, 7, 14, 15 | syl3an 1159 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → ((𝑀 + 𝐴) ≤ 𝑁 → 𝑀 < 𝑁)) |
17 | zltp1le 12370 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) | |
18 | 17 | 3adant3 1131 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) |
19 | 3 | 3ad2ant3 1134 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → 𝐴 ∈ ℝ) |
20 | 1red 10976 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → 1 ∈ ℝ) | |
21 | 1 | 3ad2ant1 1132 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → 𝑀 ∈ ℝ) |
22 | simpr 485 | . . . . . . . 8 ⊢ ((0 < 𝐴 ∧ 𝐴 < 1) → 𝐴 < 1) | |
23 | 11, 22 | simplbiim 505 | . . . . . . 7 ⊢ (𝐴 ∈ (0(,)1) → 𝐴 < 1) |
24 | 23 | 3ad2ant3 1134 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → 𝐴 < 1) |
25 | 19, 20, 21, 24 | ltadd2dd 11134 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → (𝑀 + 𝐴) < (𝑀 + 1)) |
26 | peano2z 12361 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ) | |
27 | 26 | zred 12426 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℝ) |
28 | 27 | 3ad2ant1 1132 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → (𝑀 + 1) ∈ ℝ) |
29 | ltletr 11067 | . . . . . 6 ⊢ (((𝑀 + 𝐴) ∈ ℝ ∧ (𝑀 + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝑀 + 𝐴) < (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁) → (𝑀 + 𝐴) < 𝑁)) | |
30 | 6, 28, 8, 29 | syl3anc 1370 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → (((𝑀 + 𝐴) < (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁) → (𝑀 + 𝐴) < 𝑁)) |
31 | 25, 30 | mpand 692 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → ((𝑀 + 1) ≤ 𝑁 → (𝑀 + 𝐴) < 𝑁)) |
32 | 18, 31 | sylbid 239 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → (𝑀 < 𝑁 → (𝑀 + 𝐴) < 𝑁)) |
33 | 16, 32 | syld 47 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → ((𝑀 + 𝐴) ≤ 𝑁 → (𝑀 + 𝐴) < 𝑁)) |
34 | 10, 33 | impbid 211 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → ((𝑀 + 𝐴) < 𝑁 ↔ (𝑀 + 𝐴) ≤ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2106 class class class wbr 5074 (class class class)co 7275 ℝcr 10870 0cc0 10871 1c1 10872 + caddc 10874 ℝ*cxr 11008 < clt 11009 ≤ cle 11010 ℤcz 12319 ℝ+crp 12730 (,)cioo 13079 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-rp 12731 df-ioo 13083 |
This theorem is referenced by: halfleoddlt 16071 |
Copyright terms: Public domain | W3C validator |