![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zltaddlt1le | Structured version Visualization version GIF version |
Description: The sum of an integer and a real number between 0 and 1 is less than or equal to a second integer iff the sum is less than the second integer. (Contributed by AV, 1-Jul-2021.) |
Ref | Expression |
---|---|
zltaddlt1le | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → ((𝑀 + 𝐴) < 𝑁 ↔ (𝑀 + 𝐴) ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 12559 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → 𝑀 ∈ ℝ) |
3 | elioore 13351 | . . . . . 6 ⊢ (𝐴 ∈ (0(,)1) → 𝐴 ∈ ℝ) | |
4 | 3 | adantl 481 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → 𝐴 ∈ ℝ) |
5 | 2, 4 | readdcld 11240 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → (𝑀 + 𝐴) ∈ ℝ) |
6 | 5 | 3adant2 1128 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → (𝑀 + 𝐴) ∈ ℝ) |
7 | zre 12559 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
8 | 7 | 3ad2ant2 1131 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → 𝑁 ∈ ℝ) |
9 | ltle 11299 | . . 3 ⊢ (((𝑀 + 𝐴) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 + 𝐴) < 𝑁 → (𝑀 + 𝐴) ≤ 𝑁)) | |
10 | 6, 8, 9 | syl2anc 583 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → ((𝑀 + 𝐴) < 𝑁 → (𝑀 + 𝐴) ≤ 𝑁)) |
11 | elioo3g 13350 | . . . . . 6 ⊢ (𝐴 ∈ (0(,)1) ↔ ((0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) ∧ (0 < 𝐴 ∧ 𝐴 < 1))) | |
12 | simpl 482 | . . . . . 6 ⊢ ((0 < 𝐴 ∧ 𝐴 < 1) → 0 < 𝐴) | |
13 | 11, 12 | simplbiim 504 | . . . . 5 ⊢ (𝐴 ∈ (0(,)1) → 0 < 𝐴) |
14 | 3, 13 | elrpd 13010 | . . . 4 ⊢ (𝐴 ∈ (0(,)1) → 𝐴 ∈ ℝ+) |
15 | addlelt 13085 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → ((𝑀 + 𝐴) ≤ 𝑁 → 𝑀 < 𝑁)) | |
16 | 1, 7, 14, 15 | syl3an 1157 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → ((𝑀 + 𝐴) ≤ 𝑁 → 𝑀 < 𝑁)) |
17 | zltp1le 12609 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) | |
18 | 17 | 3adant3 1129 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) |
19 | 3 | 3ad2ant3 1132 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → 𝐴 ∈ ℝ) |
20 | 1red 11212 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → 1 ∈ ℝ) | |
21 | 1 | 3ad2ant1 1130 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → 𝑀 ∈ ℝ) |
22 | simpr 484 | . . . . . . . 8 ⊢ ((0 < 𝐴 ∧ 𝐴 < 1) → 𝐴 < 1) | |
23 | 11, 22 | simplbiim 504 | . . . . . . 7 ⊢ (𝐴 ∈ (0(,)1) → 𝐴 < 1) |
24 | 23 | 3ad2ant3 1132 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → 𝐴 < 1) |
25 | 19, 20, 21, 24 | ltadd2dd 11370 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → (𝑀 + 𝐴) < (𝑀 + 1)) |
26 | peano2z 12600 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ) | |
27 | 26 | zred 12663 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℝ) |
28 | 27 | 3ad2ant1 1130 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → (𝑀 + 1) ∈ ℝ) |
29 | ltletr 11303 | . . . . . 6 ⊢ (((𝑀 + 𝐴) ∈ ℝ ∧ (𝑀 + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝑀 + 𝐴) < (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁) → (𝑀 + 𝐴) < 𝑁)) | |
30 | 6, 28, 8, 29 | syl3anc 1368 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → (((𝑀 + 𝐴) < (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁) → (𝑀 + 𝐴) < 𝑁)) |
31 | 25, 30 | mpand 692 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → ((𝑀 + 1) ≤ 𝑁 → (𝑀 + 𝐴) < 𝑁)) |
32 | 18, 31 | sylbid 239 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → (𝑀 < 𝑁 → (𝑀 + 𝐴) < 𝑁)) |
33 | 16, 32 | syld 47 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → ((𝑀 + 𝐴) ≤ 𝑁 → (𝑀 + 𝐴) < 𝑁)) |
34 | 10, 33 | impbid 211 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → ((𝑀 + 𝐴) < 𝑁 ↔ (𝑀 + 𝐴) ≤ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 ∈ wcel 2098 class class class wbr 5138 (class class class)co 7401 ℝcr 11105 0cc0 11106 1c1 11107 + caddc 11109 ℝ*cxr 11244 < clt 11245 ≤ cle 11246 ℤcz 12555 ℝ+crp 12971 (,)cioo 13321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-n0 12470 df-z 12556 df-rp 12972 df-ioo 13325 |
This theorem is referenced by: halfleoddlt 16302 |
Copyright terms: Public domain | W3C validator |