![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zltaddlt1le | Structured version Visualization version GIF version |
Description: The sum of an integer and a real number between 0 and 1 is less than or equal to a second integer iff the sum is less than the second integer. (Contributed by AV, 1-Jul-2021.) |
Ref | Expression |
---|---|
zltaddlt1le | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → ((𝑀 + 𝐴) < 𝑁 ↔ (𝑀 + 𝐴) ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 12510 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
2 | 1 | adantr 482 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → 𝑀 ∈ ℝ) |
3 | elioore 13301 | . . . . . 6 ⊢ (𝐴 ∈ (0(,)1) → 𝐴 ∈ ℝ) | |
4 | 3 | adantl 483 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → 𝐴 ∈ ℝ) |
5 | 2, 4 | readdcld 11191 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → (𝑀 + 𝐴) ∈ ℝ) |
6 | 5 | 3adant2 1132 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → (𝑀 + 𝐴) ∈ ℝ) |
7 | zre 12510 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
8 | 7 | 3ad2ant2 1135 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → 𝑁 ∈ ℝ) |
9 | ltle 11250 | . . 3 ⊢ (((𝑀 + 𝐴) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 + 𝐴) < 𝑁 → (𝑀 + 𝐴) ≤ 𝑁)) | |
10 | 6, 8, 9 | syl2anc 585 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → ((𝑀 + 𝐴) < 𝑁 → (𝑀 + 𝐴) ≤ 𝑁)) |
11 | elioo3g 13300 | . . . . . 6 ⊢ (𝐴 ∈ (0(,)1) ↔ ((0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) ∧ (0 < 𝐴 ∧ 𝐴 < 1))) | |
12 | simpl 484 | . . . . . 6 ⊢ ((0 < 𝐴 ∧ 𝐴 < 1) → 0 < 𝐴) | |
13 | 11, 12 | simplbiim 506 | . . . . 5 ⊢ (𝐴 ∈ (0(,)1) → 0 < 𝐴) |
14 | 3, 13 | elrpd 12961 | . . . 4 ⊢ (𝐴 ∈ (0(,)1) → 𝐴 ∈ ℝ+) |
15 | addlelt 13036 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ+) → ((𝑀 + 𝐴) ≤ 𝑁 → 𝑀 < 𝑁)) | |
16 | 1, 7, 14, 15 | syl3an 1161 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → ((𝑀 + 𝐴) ≤ 𝑁 → 𝑀 < 𝑁)) |
17 | zltp1le 12560 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) | |
18 | 17 | 3adant3 1133 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) |
19 | 3 | 3ad2ant3 1136 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → 𝐴 ∈ ℝ) |
20 | 1red 11163 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → 1 ∈ ℝ) | |
21 | 1 | 3ad2ant1 1134 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → 𝑀 ∈ ℝ) |
22 | simpr 486 | . . . . . . . 8 ⊢ ((0 < 𝐴 ∧ 𝐴 < 1) → 𝐴 < 1) | |
23 | 11, 22 | simplbiim 506 | . . . . . . 7 ⊢ (𝐴 ∈ (0(,)1) → 𝐴 < 1) |
24 | 23 | 3ad2ant3 1136 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → 𝐴 < 1) |
25 | 19, 20, 21, 24 | ltadd2dd 11321 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → (𝑀 + 𝐴) < (𝑀 + 1)) |
26 | peano2z 12551 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ) | |
27 | 26 | zred 12614 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℝ) |
28 | 27 | 3ad2ant1 1134 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → (𝑀 + 1) ∈ ℝ) |
29 | ltletr 11254 | . . . . . 6 ⊢ (((𝑀 + 𝐴) ∈ ℝ ∧ (𝑀 + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝑀 + 𝐴) < (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁) → (𝑀 + 𝐴) < 𝑁)) | |
30 | 6, 28, 8, 29 | syl3anc 1372 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → (((𝑀 + 𝐴) < (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁) → (𝑀 + 𝐴) < 𝑁)) |
31 | 25, 30 | mpand 694 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → ((𝑀 + 1) ≤ 𝑁 → (𝑀 + 𝐴) < 𝑁)) |
32 | 18, 31 | sylbid 239 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → (𝑀 < 𝑁 → (𝑀 + 𝐴) < 𝑁)) |
33 | 16, 32 | syld 47 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → ((𝑀 + 𝐴) ≤ 𝑁 → (𝑀 + 𝐴) < 𝑁)) |
34 | 10, 33 | impbid 211 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (0(,)1)) → ((𝑀 + 𝐴) < 𝑁 ↔ (𝑀 + 𝐴) ≤ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 ∈ wcel 2107 class class class wbr 5110 (class class class)co 7362 ℝcr 11057 0cc0 11058 1c1 11059 + caddc 11061 ℝ*cxr 11195 < clt 11196 ≤ cle 11197 ℤcz 12506 ℝ+crp 12922 (,)cioo 13271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-cnex 11114 ax-resscn 11115 ax-1cn 11116 ax-icn 11117 ax-addcl 11118 ax-addrcl 11119 ax-mulcl 11120 ax-mulrcl 11121 ax-mulcom 11122 ax-addass 11123 ax-mulass 11124 ax-distr 11125 ax-i2m1 11126 ax-1ne0 11127 ax-1rid 11128 ax-rnegex 11129 ax-rrecex 11130 ax-cnre 11131 ax-pre-lttri 11132 ax-pre-lttrn 11133 ax-pre-ltadd 11134 ax-pre-mulgt0 11135 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-om 7808 df-1st 7926 df-2nd 7927 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-er 8655 df-en 8891 df-dom 8892 df-sdom 8893 df-pnf 11198 df-mnf 11199 df-xr 11200 df-ltxr 11201 df-le 11202 df-sub 11394 df-neg 11395 df-nn 12161 df-n0 12421 df-z 12507 df-rp 12923 df-ioo 13275 |
This theorem is referenced by: halfleoddlt 16251 |
Copyright terms: Public domain | W3C validator |