Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nn0ledivnn | Structured version Visualization version GIF version |
Description: Division of a nonnegative integer by a positive integer is less than or equal to the integer. (Contributed by AV, 19-Jun-2021.) |
Ref | Expression |
---|---|
nn0ledivnn | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 12235 | . . 3 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) | |
2 | nnge1 12001 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ → 1 ≤ 𝐵) | |
3 | 2 | adantl 482 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 1 ≤ 𝐵) |
4 | nnrp 12741 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+) | |
5 | nnledivrp 12842 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → (1 ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ 𝐴)) | |
6 | 4, 5 | sylan2 593 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (1 ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ 𝐴)) |
7 | 3, 6 | mpbid 231 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ≤ 𝐴) |
8 | 7 | ex 413 | . . . 4 ⊢ (𝐴 ∈ ℕ → (𝐵 ∈ ℕ → (𝐴 / 𝐵) ≤ 𝐴)) |
9 | nncn 11981 | . . . . . . . . . 10 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℂ) | |
10 | nnne0 12007 | . . . . . . . . . 10 ⊢ (𝐵 ∈ ℕ → 𝐵 ≠ 0) | |
11 | 9, 10 | jca 512 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℕ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) |
12 | 11 | adantl 482 | . . . . . . . 8 ⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) |
13 | div0 11663 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (0 / 𝐵) = 0) | |
14 | 12, 13 | syl 17 | . . . . . . 7 ⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (0 / 𝐵) = 0) |
15 | 0le0 12074 | . . . . . . 7 ⊢ 0 ≤ 0 | |
16 | 14, 15 | eqbrtrdi 5113 | . . . . . 6 ⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (0 / 𝐵) ≤ 0) |
17 | oveq1 7282 | . . . . . . . 8 ⊢ (𝐴 = 0 → (𝐴 / 𝐵) = (0 / 𝐵)) | |
18 | id 22 | . . . . . . . 8 ⊢ (𝐴 = 0 → 𝐴 = 0) | |
19 | 17, 18 | breq12d 5087 | . . . . . . 7 ⊢ (𝐴 = 0 → ((𝐴 / 𝐵) ≤ 𝐴 ↔ (0 / 𝐵) ≤ 0)) |
20 | 19 | adantr 481 | . . . . . 6 ⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) ≤ 𝐴 ↔ (0 / 𝐵) ≤ 0)) |
21 | 16, 20 | mpbird 256 | . . . . 5 ⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ≤ 𝐴) |
22 | 21 | ex 413 | . . . 4 ⊢ (𝐴 = 0 → (𝐵 ∈ ℕ → (𝐴 / 𝐵) ≤ 𝐴)) |
23 | 8, 22 | jaoi 854 | . . 3 ⊢ ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → (𝐵 ∈ ℕ → (𝐴 / 𝐵) ≤ 𝐴)) |
24 | 1, 23 | sylbi 216 | . 2 ⊢ (𝐴 ∈ ℕ0 → (𝐵 ∈ ℕ → (𝐴 / 𝐵) ≤ 𝐴)) |
25 | 24 | imp 407 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5074 (class class class)co 7275 ℂcc 10869 0cc0 10871 1c1 10872 ≤ cle 11010 / cdiv 11632 ℕcn 11973 ℕ0cn0 12233 ℝ+crp 12730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-n0 12234 df-rp 12731 |
This theorem is referenced by: 2lgslem1c 26541 |
Copyright terms: Public domain | W3C validator |