MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0ledivnn Structured version   Visualization version   GIF version

Theorem nn0ledivnn 12772
Description: Division of a nonnegative integer by a positive integer is less than or equal to the integer. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
nn0ledivnn ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐴 / 𝐵) ≤ 𝐴)

Proof of Theorem nn0ledivnn
StepHypRef Expression
1 elnn0 12165 . . 3 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
2 nnge1 11931 . . . . . . 7 (𝐵 ∈ ℕ → 1 ≤ 𝐵)
32adantl 481 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 1 ≤ 𝐵)
4 nnrp 12670 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+)
5 nnledivrp 12771 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → (1 ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ 𝐴))
64, 5sylan2 592 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (1 ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ 𝐴))
73, 6mpbid 231 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ≤ 𝐴)
87ex 412 . . . 4 (𝐴 ∈ ℕ → (𝐵 ∈ ℕ → (𝐴 / 𝐵) ≤ 𝐴))
9 nncn 11911 . . . . . . . . . 10 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
10 nnne0 11937 . . . . . . . . . 10 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
119, 10jca 511 . . . . . . . . 9 (𝐵 ∈ ℕ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
1211adantl 481 . . . . . . . 8 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
13 div0 11593 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (0 / 𝐵) = 0)
1412, 13syl 17 . . . . . . 7 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (0 / 𝐵) = 0)
15 0le0 12004 . . . . . . 7 0 ≤ 0
1614, 15eqbrtrdi 5109 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (0 / 𝐵) ≤ 0)
17 oveq1 7262 . . . . . . . 8 (𝐴 = 0 → (𝐴 / 𝐵) = (0 / 𝐵))
18 id 22 . . . . . . . 8 (𝐴 = 0 → 𝐴 = 0)
1917, 18breq12d 5083 . . . . . . 7 (𝐴 = 0 → ((𝐴 / 𝐵) ≤ 𝐴 ↔ (0 / 𝐵) ≤ 0))
2019adantr 480 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) ≤ 𝐴 ↔ (0 / 𝐵) ≤ 0))
2116, 20mpbird 256 . . . . 5 ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ≤ 𝐴)
2221ex 412 . . . 4 (𝐴 = 0 → (𝐵 ∈ ℕ → (𝐴 / 𝐵) ≤ 𝐴))
238, 22jaoi 853 . . 3 ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → (𝐵 ∈ ℕ → (𝐴 / 𝐵) ≤ 𝐴))
241, 23sylbi 216 . 2 (𝐴 ∈ ℕ0 → (𝐵 ∈ ℕ → (𝐴 / 𝐵) ≤ 𝐴))
2524imp 406 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐴 / 𝐵) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803  cle 10941   / cdiv 11562  cn 11903  0cn0 12163  +crp 12659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-rp 12660
This theorem is referenced by:  2lgslem1c  26446
  Copyright terms: Public domain W3C validator