![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0ledivnn | Structured version Visualization version GIF version |
Description: Division of a nonnegative integer by a positive integer is less than or equal to the integer. (Contributed by AV, 19-Jun-2021.) |
Ref | Expression |
---|---|
nn0ledivnn | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 11712 | . . 3 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) | |
2 | nnge1 11471 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ → 1 ≤ 𝐵) | |
3 | 2 | adantl 474 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 1 ≤ 𝐵) |
4 | nnrp 12220 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+) | |
5 | nnledivrp 12321 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → (1 ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ 𝐴)) | |
6 | 4, 5 | sylan2 583 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (1 ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ 𝐴)) |
7 | 3, 6 | mpbid 224 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ≤ 𝐴) |
8 | 7 | ex 405 | . . . 4 ⊢ (𝐴 ∈ ℕ → (𝐵 ∈ ℕ → (𝐴 / 𝐵) ≤ 𝐴)) |
9 | nncn 11450 | . . . . . . . . . 10 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℂ) | |
10 | nnne0 11477 | . . . . . . . . . 10 ⊢ (𝐵 ∈ ℕ → 𝐵 ≠ 0) | |
11 | 9, 10 | jca 504 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℕ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) |
12 | 11 | adantl 474 | . . . . . . . 8 ⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) |
13 | div0 11131 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (0 / 𝐵) = 0) | |
14 | 12, 13 | syl 17 | . . . . . . 7 ⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (0 / 𝐵) = 0) |
15 | 0le0 11551 | . . . . . . 7 ⊢ 0 ≤ 0 | |
16 | 14, 15 | syl6eqbr 4969 | . . . . . 6 ⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (0 / 𝐵) ≤ 0) |
17 | oveq1 6985 | . . . . . . . 8 ⊢ (𝐴 = 0 → (𝐴 / 𝐵) = (0 / 𝐵)) | |
18 | id 22 | . . . . . . . 8 ⊢ (𝐴 = 0 → 𝐴 = 0) | |
19 | 17, 18 | breq12d 4943 | . . . . . . 7 ⊢ (𝐴 = 0 → ((𝐴 / 𝐵) ≤ 𝐴 ↔ (0 / 𝐵) ≤ 0)) |
20 | 19 | adantr 473 | . . . . . 6 ⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) ≤ 𝐴 ↔ (0 / 𝐵) ≤ 0)) |
21 | 16, 20 | mpbird 249 | . . . . 5 ⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ≤ 𝐴) |
22 | 21 | ex 405 | . . . 4 ⊢ (𝐴 = 0 → (𝐵 ∈ ℕ → (𝐴 / 𝐵) ≤ 𝐴)) |
23 | 8, 22 | jaoi 843 | . . 3 ⊢ ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → (𝐵 ∈ ℕ → (𝐴 / 𝐵) ≤ 𝐴)) |
24 | 1, 23 | sylbi 209 | . 2 ⊢ (𝐴 ∈ ℕ0 → (𝐵 ∈ ℕ → (𝐴 / 𝐵) ≤ 𝐴)) |
25 | 24 | imp 398 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∨ wo 833 = wceq 1507 ∈ wcel 2050 ≠ wne 2967 class class class wbr 4930 (class class class)co 6978 ℂcc 10335 0cc0 10337 1c1 10338 ≤ cle 10477 / cdiv 11100 ℕcn 11441 ℕ0cn0 11710 ℝ+crp 12207 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5061 ax-nul 5068 ax-pow 5120 ax-pr 5187 ax-un 7281 ax-resscn 10394 ax-1cn 10395 ax-icn 10396 ax-addcl 10397 ax-addrcl 10398 ax-mulcl 10399 ax-mulrcl 10400 ax-mulcom 10401 ax-addass 10402 ax-mulass 10403 ax-distr 10404 ax-i2m1 10405 ax-1ne0 10406 ax-1rid 10407 ax-rnegex 10408 ax-rrecex 10409 ax-cnre 10410 ax-pre-lttri 10411 ax-pre-lttrn 10412 ax-pre-ltadd 10413 ax-pre-mulgt0 10414 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4181 df-if 4352 df-pw 4425 df-sn 4443 df-pr 4445 df-tp 4447 df-op 4449 df-uni 4714 df-iun 4795 df-br 4931 df-opab 4993 df-mpt 5010 df-tr 5032 df-id 5313 df-eprel 5318 df-po 5327 df-so 5328 df-fr 5367 df-we 5369 df-xp 5414 df-rel 5415 df-cnv 5416 df-co 5417 df-dm 5418 df-rn 5419 df-res 5420 df-ima 5421 df-pred 5988 df-ord 6034 df-on 6035 df-lim 6036 df-suc 6037 df-iota 6154 df-fun 6192 df-fn 6193 df-f 6194 df-f1 6195 df-fo 6196 df-f1o 6197 df-fv 6198 df-riota 6939 df-ov 6981 df-oprab 6982 df-mpo 6983 df-om 7399 df-wrecs 7752 df-recs 7814 df-rdg 7852 df-er 8091 df-en 8309 df-dom 8310 df-sdom 8311 df-pnf 10478 df-mnf 10479 df-xr 10480 df-ltxr 10481 df-le 10482 df-sub 10674 df-neg 10675 df-div 11101 df-nn 11442 df-n0 11711 df-rp 12208 |
This theorem is referenced by: 2lgslem1c 25674 |
Copyright terms: Public domain | W3C validator |