![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0ledivnn | Structured version Visualization version GIF version |
Description: Division of a nonnegative integer by a positive integer is less than or equal to the integer. (Contributed by AV, 19-Jun-2021.) |
Ref | Expression |
---|---|
nn0ledivnn | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 12499 | . . 3 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) | |
2 | nnge1 12265 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ → 1 ≤ 𝐵) | |
3 | 2 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 1 ≤ 𝐵) |
4 | nnrp 13012 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+) | |
5 | nnledivrp 13113 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+) → (1 ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ 𝐴)) | |
6 | 4, 5 | sylan2 592 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (1 ≤ 𝐵 ↔ (𝐴 / 𝐵) ≤ 𝐴)) |
7 | 3, 6 | mpbid 231 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ≤ 𝐴) |
8 | 7 | ex 412 | . . . 4 ⊢ (𝐴 ∈ ℕ → (𝐵 ∈ ℕ → (𝐴 / 𝐵) ≤ 𝐴)) |
9 | nncn 12245 | . . . . . . . . . 10 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℂ) | |
10 | nnne0 12271 | . . . . . . . . . 10 ⊢ (𝐵 ∈ ℕ → 𝐵 ≠ 0) | |
11 | 9, 10 | jca 511 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℕ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) |
12 | 11 | adantl 481 | . . . . . . . 8 ⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) |
13 | div0 11927 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (0 / 𝐵) = 0) | |
14 | 12, 13 | syl 17 | . . . . . . 7 ⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (0 / 𝐵) = 0) |
15 | 0le0 12338 | . . . . . . 7 ⊢ 0 ≤ 0 | |
16 | 14, 15 | eqbrtrdi 5182 | . . . . . 6 ⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (0 / 𝐵) ≤ 0) |
17 | oveq1 7422 | . . . . . . . 8 ⊢ (𝐴 = 0 → (𝐴 / 𝐵) = (0 / 𝐵)) | |
18 | id 22 | . . . . . . . 8 ⊢ (𝐴 = 0 → 𝐴 = 0) | |
19 | 17, 18 | breq12d 5156 | . . . . . . 7 ⊢ (𝐴 = 0 → ((𝐴 / 𝐵) ≤ 𝐴 ↔ (0 / 𝐵) ≤ 0)) |
20 | 19 | adantr 480 | . . . . . 6 ⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) ≤ 𝐴 ↔ (0 / 𝐵) ≤ 0)) |
21 | 16, 20 | mpbird 257 | . . . . 5 ⊢ ((𝐴 = 0 ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ≤ 𝐴) |
22 | 21 | ex 412 | . . . 4 ⊢ (𝐴 = 0 → (𝐵 ∈ ℕ → (𝐴 / 𝐵) ≤ 𝐴)) |
23 | 8, 22 | jaoi 856 | . . 3 ⊢ ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → (𝐵 ∈ ℕ → (𝐴 / 𝐵) ≤ 𝐴)) |
24 | 1, 23 | sylbi 216 | . 2 ⊢ (𝐴 ∈ ℕ0 → (𝐵 ∈ ℕ → (𝐴 / 𝐵) ≤ 𝐴)) |
25 | 24 | imp 406 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 846 = wceq 1534 ∈ wcel 2099 ≠ wne 2936 class class class wbr 5143 (class class class)co 7415 ℂcc 11131 0cc0 11133 1c1 11134 ≤ cle 11274 / cdiv 11896 ℕcn 12237 ℕ0cn0 12497 ℝ+crp 13001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-2nd 7989 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-er 8719 df-en 8959 df-dom 8960 df-sdom 8961 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-nn 12238 df-n0 12498 df-rp 13002 |
This theorem is referenced by: 2lgslem1c 27320 |
Copyright terms: Public domain | W3C validator |