![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gchaleph2 | Structured version Visualization version GIF version |
Description: If (ℵ‘𝐴) and (ℵ‘suc 𝐴) are GCH-sets, then the successor aleph (ℵ‘suc 𝐴) is equinumerous to the powerset of (ℵ‘𝐴). (Contributed by Mario Carneiro, 31-May-2015.) |
Ref | Expression |
---|---|
gchaleph2 | ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → (ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | harcl 8820 | . . 3 ⊢ (har‘(ℵ‘𝐴)) ∈ On | |
2 | alephon 9289 | . . . . 5 ⊢ (ℵ‘𝐴) ∈ On | |
3 | onenon 9172 | . . . . 5 ⊢ ((ℵ‘𝐴) ∈ On → (ℵ‘𝐴) ∈ dom card) | |
4 | harsdom 9218 | . . . . 5 ⊢ ((ℵ‘𝐴) ∈ dom card → (ℵ‘𝐴) ≺ (har‘(ℵ‘𝐴))) | |
5 | 2, 3, 4 | mp2b 10 | . . . 4 ⊢ (ℵ‘𝐴) ≺ (har‘(ℵ‘𝐴)) |
6 | simp1 1116 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → 𝐴 ∈ On) | |
7 | alephgeom 9302 | . . . . . . 7 ⊢ (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴)) | |
8 | 6, 7 | sylib 210 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → ω ⊆ (ℵ‘𝐴)) |
9 | ssdomg 8352 | . . . . . 6 ⊢ ((ℵ‘𝐴) ∈ On → (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴))) | |
10 | 2, 8, 9 | mpsyl 68 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → ω ≼ (ℵ‘𝐴)) |
11 | simp2 1117 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → (ℵ‘𝐴) ∈ GCH) | |
12 | alephsuc 9288 | . . . . . . 7 ⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) = (har‘(ℵ‘𝐴))) | |
13 | 6, 12 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → (ℵ‘suc 𝐴) = (har‘(ℵ‘𝐴))) |
14 | simp3 1118 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → (ℵ‘suc 𝐴) ∈ GCH) | |
15 | 13, 14 | eqeltrrd 2867 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → (har‘(ℵ‘𝐴)) ∈ GCH) |
16 | gchpwdom 9890 | . . . . 5 ⊢ ((ω ≼ (ℵ‘𝐴) ∧ (ℵ‘𝐴) ∈ GCH ∧ (har‘(ℵ‘𝐴)) ∈ GCH) → ((ℵ‘𝐴) ≺ (har‘(ℵ‘𝐴)) ↔ 𝒫 (ℵ‘𝐴) ≼ (har‘(ℵ‘𝐴)))) | |
17 | 10, 11, 15, 16 | syl3anc 1351 | . . . 4 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → ((ℵ‘𝐴) ≺ (har‘(ℵ‘𝐴)) ↔ 𝒫 (ℵ‘𝐴) ≼ (har‘(ℵ‘𝐴)))) |
18 | 5, 17 | mpbii 225 | . . 3 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → 𝒫 (ℵ‘𝐴) ≼ (har‘(ℵ‘𝐴))) |
19 | ondomen 9257 | . . 3 ⊢ (((har‘(ℵ‘𝐴)) ∈ On ∧ 𝒫 (ℵ‘𝐴) ≼ (har‘(ℵ‘𝐴))) → 𝒫 (ℵ‘𝐴) ∈ dom card) | |
20 | 1, 18, 19 | sylancr 578 | . 2 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → 𝒫 (ℵ‘𝐴) ∈ dom card) |
21 | gchaleph 9891 | . 2 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → (ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴)) | |
22 | 20, 21 | syld3an3 1389 | 1 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → (ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 ⊆ wss 3829 𝒫 cpw 4422 class class class wbr 4929 dom cdm 5407 Oncon0 6029 suc csuc 6031 ‘cfv 6188 ωcom 7396 ≈ cen 8303 ≼ cdom 8304 ≺ csdm 8305 harchar 8815 cardccrd 9158 ℵcale 9159 GCHcgch 9840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-inf2 8898 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-pss 3845 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-se 5367 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-isom 6197 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-1st 7501 df-2nd 7502 df-supp 7634 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-seqom 7887 df-1o 7905 df-2o 7906 df-oadd 7909 df-omul 7910 df-oexp 7911 df-er 8089 df-map 8208 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-fsupp 8629 df-oi 8769 df-har 8817 df-wdom 8818 df-cnf 8919 df-dju 9124 df-card 9162 df-aleph 9163 df-fin4 9507 df-gch 9841 |
This theorem is referenced by: gch2 9895 gch3 9896 |
Copyright terms: Public domain | W3C validator |