| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gchaleph2 | Structured version Visualization version GIF version | ||
| Description: If (ℵ‘𝐴) and (ℵ‘suc 𝐴) are GCH-sets, then the successor aleph (ℵ‘suc 𝐴) is equinumerous to the powerset of (ℵ‘𝐴). (Contributed by Mario Carneiro, 31-May-2015.) |
| Ref | Expression |
|---|---|
| gchaleph2 | ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → (ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | harcl 9573 | . . 3 ⊢ (har‘(ℵ‘𝐴)) ∈ On | |
| 2 | alephon 10083 | . . . . 5 ⊢ (ℵ‘𝐴) ∈ On | |
| 3 | onenon 9963 | . . . . 5 ⊢ ((ℵ‘𝐴) ∈ On → (ℵ‘𝐴) ∈ dom card) | |
| 4 | harsdom 10009 | . . . . 5 ⊢ ((ℵ‘𝐴) ∈ dom card → (ℵ‘𝐴) ≺ (har‘(ℵ‘𝐴))) | |
| 5 | 2, 3, 4 | mp2b 10 | . . . 4 ⊢ (ℵ‘𝐴) ≺ (har‘(ℵ‘𝐴)) |
| 6 | simp1 1136 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → 𝐴 ∈ On) | |
| 7 | alephgeom 10096 | . . . . . . 7 ⊢ (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴)) | |
| 8 | 6, 7 | sylib 218 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → ω ⊆ (ℵ‘𝐴)) |
| 9 | ssdomg 9014 | . . . . . 6 ⊢ ((ℵ‘𝐴) ∈ On → (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴))) | |
| 10 | 2, 8, 9 | mpsyl 68 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → ω ≼ (ℵ‘𝐴)) |
| 11 | simp2 1137 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → (ℵ‘𝐴) ∈ GCH) | |
| 12 | alephsuc 10082 | . . . . . . 7 ⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) = (har‘(ℵ‘𝐴))) | |
| 13 | 6, 12 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → (ℵ‘suc 𝐴) = (har‘(ℵ‘𝐴))) |
| 14 | simp3 1138 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → (ℵ‘suc 𝐴) ∈ GCH) | |
| 15 | 13, 14 | eqeltrrd 2835 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → (har‘(ℵ‘𝐴)) ∈ GCH) |
| 16 | gchpwdom 10684 | . . . . 5 ⊢ ((ω ≼ (ℵ‘𝐴) ∧ (ℵ‘𝐴) ∈ GCH ∧ (har‘(ℵ‘𝐴)) ∈ GCH) → ((ℵ‘𝐴) ≺ (har‘(ℵ‘𝐴)) ↔ 𝒫 (ℵ‘𝐴) ≼ (har‘(ℵ‘𝐴)))) | |
| 17 | 10, 11, 15, 16 | syl3anc 1373 | . . . 4 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → ((ℵ‘𝐴) ≺ (har‘(ℵ‘𝐴)) ↔ 𝒫 (ℵ‘𝐴) ≼ (har‘(ℵ‘𝐴)))) |
| 18 | 5, 17 | mpbii 233 | . . 3 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → 𝒫 (ℵ‘𝐴) ≼ (har‘(ℵ‘𝐴))) |
| 19 | ondomen 10051 | . . 3 ⊢ (((har‘(ℵ‘𝐴)) ∈ On ∧ 𝒫 (ℵ‘𝐴) ≼ (har‘(ℵ‘𝐴))) → 𝒫 (ℵ‘𝐴) ∈ dom card) | |
| 20 | 1, 18, 19 | sylancr 587 | . 2 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → 𝒫 (ℵ‘𝐴) ∈ dom card) |
| 21 | gchaleph 10685 | . 2 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → (ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴)) | |
| 22 | 20, 21 | syld3an3 1411 | 1 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → (ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 𝒫 cpw 4575 class class class wbr 5119 dom cdm 5654 Oncon0 6352 suc csuc 6354 ‘cfv 6531 ωcom 7861 ≈ cen 8956 ≼ cdom 8957 ≺ csdm 8958 harchar 9570 cardccrd 9949 ℵcale 9950 GCHcgch 10634 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-seqom 8462 df-1o 8480 df-2o 8481 df-oadd 8484 df-omul 8485 df-oexp 8486 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-oi 9524 df-har 9571 df-wdom 9579 df-cnf 9676 df-dju 9915 df-card 9953 df-aleph 9954 df-fin4 10301 df-gch 10635 |
| This theorem is referenced by: gch2 10689 gch3 10690 |
| Copyright terms: Public domain | W3C validator |