| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gchaleph2 | Structured version Visualization version GIF version | ||
| Description: If (ℵ‘𝐴) and (ℵ‘suc 𝐴) are GCH-sets, then the successor aleph (ℵ‘suc 𝐴) is equinumerous to the powerset of (ℵ‘𝐴). (Contributed by Mario Carneiro, 31-May-2015.) |
| Ref | Expression |
|---|---|
| gchaleph2 | ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → (ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | harcl 9452 | . . 3 ⊢ (har‘(ℵ‘𝐴)) ∈ On | |
| 2 | alephon 9967 | . . . . 5 ⊢ (ℵ‘𝐴) ∈ On | |
| 3 | onenon 9849 | . . . . 5 ⊢ ((ℵ‘𝐴) ∈ On → (ℵ‘𝐴) ∈ dom card) | |
| 4 | harsdom 9895 | . . . . 5 ⊢ ((ℵ‘𝐴) ∈ dom card → (ℵ‘𝐴) ≺ (har‘(ℵ‘𝐴))) | |
| 5 | 2, 3, 4 | mp2b 10 | . . . 4 ⊢ (ℵ‘𝐴) ≺ (har‘(ℵ‘𝐴)) |
| 6 | simp1 1136 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → 𝐴 ∈ On) | |
| 7 | alephgeom 9980 | . . . . . . 7 ⊢ (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴)) | |
| 8 | 6, 7 | sylib 218 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → ω ⊆ (ℵ‘𝐴)) |
| 9 | ssdomg 8929 | . . . . . 6 ⊢ ((ℵ‘𝐴) ∈ On → (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴))) | |
| 10 | 2, 8, 9 | mpsyl 68 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → ω ≼ (ℵ‘𝐴)) |
| 11 | simp2 1137 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → (ℵ‘𝐴) ∈ GCH) | |
| 12 | alephsuc 9966 | . . . . . . 7 ⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) = (har‘(ℵ‘𝐴))) | |
| 13 | 6, 12 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → (ℵ‘suc 𝐴) = (har‘(ℵ‘𝐴))) |
| 14 | simp3 1138 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → (ℵ‘suc 𝐴) ∈ GCH) | |
| 15 | 13, 14 | eqeltrrd 2834 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → (har‘(ℵ‘𝐴)) ∈ GCH) |
| 16 | gchpwdom 10568 | . . . . 5 ⊢ ((ω ≼ (ℵ‘𝐴) ∧ (ℵ‘𝐴) ∈ GCH ∧ (har‘(ℵ‘𝐴)) ∈ GCH) → ((ℵ‘𝐴) ≺ (har‘(ℵ‘𝐴)) ↔ 𝒫 (ℵ‘𝐴) ≼ (har‘(ℵ‘𝐴)))) | |
| 17 | 10, 11, 15, 16 | syl3anc 1373 | . . . 4 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → ((ℵ‘𝐴) ≺ (har‘(ℵ‘𝐴)) ↔ 𝒫 (ℵ‘𝐴) ≼ (har‘(ℵ‘𝐴)))) |
| 18 | 5, 17 | mpbii 233 | . . 3 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → 𝒫 (ℵ‘𝐴) ≼ (har‘(ℵ‘𝐴))) |
| 19 | ondomen 9935 | . . 3 ⊢ (((har‘(ℵ‘𝐴)) ∈ On ∧ 𝒫 (ℵ‘𝐴) ≼ (har‘(ℵ‘𝐴))) → 𝒫 (ℵ‘𝐴) ∈ dom card) | |
| 20 | 1, 18, 19 | sylancr 587 | . 2 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → 𝒫 (ℵ‘𝐴) ∈ dom card) |
| 21 | gchaleph 10569 | . 2 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → (ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴)) | |
| 22 | 20, 21 | syld3an3 1411 | 1 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → (ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 𝒫 cpw 4549 class class class wbr 5093 dom cdm 5619 Oncon0 6311 suc csuc 6313 ‘cfv 6486 ωcom 7802 ≈ cen 8872 ≼ cdom 8873 ≺ csdm 8874 harchar 9449 cardccrd 9835 ℵcale 9836 GCHcgch 10518 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-seqom 8373 df-1o 8391 df-2o 8392 df-oadd 8395 df-omul 8396 df-oexp 8397 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-oi 9403 df-har 9450 df-wdom 9458 df-cnf 9559 df-dju 9801 df-card 9839 df-aleph 9840 df-fin4 10185 df-gch 10519 |
| This theorem is referenced by: gch2 10573 gch3 10574 |
| Copyright terms: Public domain | W3C validator |