MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchaleph2 Structured version   Visualization version   GIF version

Theorem gchaleph2 10671
Description: If (β„΅β€˜π΄) and (β„΅β€˜suc 𝐴) are GCH-sets, then the successor aleph (β„΅β€˜suc 𝐴) is equinumerous to the powerset of (β„΅β€˜π΄). (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
gchaleph2 ((𝐴 ∈ On ∧ (β„΅β€˜π΄) ∈ GCH ∧ (β„΅β€˜suc 𝐴) ∈ GCH) β†’ (β„΅β€˜suc 𝐴) β‰ˆ 𝒫 (β„΅β€˜π΄))

Proof of Theorem gchaleph2
StepHypRef Expression
1 harcl 9558 . . 3 (harβ€˜(β„΅β€˜π΄)) ∈ On
2 alephon 10068 . . . . 5 (β„΅β€˜π΄) ∈ On
3 onenon 9948 . . . . 5 ((β„΅β€˜π΄) ∈ On β†’ (β„΅β€˜π΄) ∈ dom card)
4 harsdom 9994 . . . . 5 ((β„΅β€˜π΄) ∈ dom card β†’ (β„΅β€˜π΄) β‰Ί (harβ€˜(β„΅β€˜π΄)))
52, 3, 4mp2b 10 . . . 4 (β„΅β€˜π΄) β‰Ί (harβ€˜(β„΅β€˜π΄))
6 simp1 1135 . . . . . . 7 ((𝐴 ∈ On ∧ (β„΅β€˜π΄) ∈ GCH ∧ (β„΅β€˜suc 𝐴) ∈ GCH) β†’ 𝐴 ∈ On)
7 alephgeom 10081 . . . . . . 7 (𝐴 ∈ On ↔ Ο‰ βŠ† (β„΅β€˜π΄))
86, 7sylib 217 . . . . . 6 ((𝐴 ∈ On ∧ (β„΅β€˜π΄) ∈ GCH ∧ (β„΅β€˜suc 𝐴) ∈ GCH) β†’ Ο‰ βŠ† (β„΅β€˜π΄))
9 ssdomg 9000 . . . . . 6 ((β„΅β€˜π΄) ∈ On β†’ (Ο‰ βŠ† (β„΅β€˜π΄) β†’ Ο‰ β‰Ό (β„΅β€˜π΄)))
102, 8, 9mpsyl 68 . . . . 5 ((𝐴 ∈ On ∧ (β„΅β€˜π΄) ∈ GCH ∧ (β„΅β€˜suc 𝐴) ∈ GCH) β†’ Ο‰ β‰Ό (β„΅β€˜π΄))
11 simp2 1136 . . . . 5 ((𝐴 ∈ On ∧ (β„΅β€˜π΄) ∈ GCH ∧ (β„΅β€˜suc 𝐴) ∈ GCH) β†’ (β„΅β€˜π΄) ∈ GCH)
12 alephsuc 10067 . . . . . . 7 (𝐴 ∈ On β†’ (β„΅β€˜suc 𝐴) = (harβ€˜(β„΅β€˜π΄)))
136, 12syl 17 . . . . . 6 ((𝐴 ∈ On ∧ (β„΅β€˜π΄) ∈ GCH ∧ (β„΅β€˜suc 𝐴) ∈ GCH) β†’ (β„΅β€˜suc 𝐴) = (harβ€˜(β„΅β€˜π΄)))
14 simp3 1137 . . . . . 6 ((𝐴 ∈ On ∧ (β„΅β€˜π΄) ∈ GCH ∧ (β„΅β€˜suc 𝐴) ∈ GCH) β†’ (β„΅β€˜suc 𝐴) ∈ GCH)
1513, 14eqeltrrd 2833 . . . . 5 ((𝐴 ∈ On ∧ (β„΅β€˜π΄) ∈ GCH ∧ (β„΅β€˜suc 𝐴) ∈ GCH) β†’ (harβ€˜(β„΅β€˜π΄)) ∈ GCH)
16 gchpwdom 10669 . . . . 5 ((Ο‰ β‰Ό (β„΅β€˜π΄) ∧ (β„΅β€˜π΄) ∈ GCH ∧ (harβ€˜(β„΅β€˜π΄)) ∈ GCH) β†’ ((β„΅β€˜π΄) β‰Ί (harβ€˜(β„΅β€˜π΄)) ↔ 𝒫 (β„΅β€˜π΄) β‰Ό (harβ€˜(β„΅β€˜π΄))))
1710, 11, 15, 16syl3anc 1370 . . . 4 ((𝐴 ∈ On ∧ (β„΅β€˜π΄) ∈ GCH ∧ (β„΅β€˜suc 𝐴) ∈ GCH) β†’ ((β„΅β€˜π΄) β‰Ί (harβ€˜(β„΅β€˜π΄)) ↔ 𝒫 (β„΅β€˜π΄) β‰Ό (harβ€˜(β„΅β€˜π΄))))
185, 17mpbii 232 . . 3 ((𝐴 ∈ On ∧ (β„΅β€˜π΄) ∈ GCH ∧ (β„΅β€˜suc 𝐴) ∈ GCH) β†’ 𝒫 (β„΅β€˜π΄) β‰Ό (harβ€˜(β„΅β€˜π΄)))
19 ondomen 10036 . . 3 (((harβ€˜(β„΅β€˜π΄)) ∈ On ∧ 𝒫 (β„΅β€˜π΄) β‰Ό (harβ€˜(β„΅β€˜π΄))) β†’ 𝒫 (β„΅β€˜π΄) ∈ dom card)
201, 18, 19sylancr 586 . 2 ((𝐴 ∈ On ∧ (β„΅β€˜π΄) ∈ GCH ∧ (β„΅β€˜suc 𝐴) ∈ GCH) β†’ 𝒫 (β„΅β€˜π΄) ∈ dom card)
21 gchaleph 10670 . 2 ((𝐴 ∈ On ∧ (β„΅β€˜π΄) ∈ GCH ∧ 𝒫 (β„΅β€˜π΄) ∈ dom card) β†’ (β„΅β€˜suc 𝐴) β‰ˆ 𝒫 (β„΅β€˜π΄))
2220, 21syld3an3 1408 1 ((𝐴 ∈ On ∧ (β„΅β€˜π΄) ∈ GCH ∧ (β„΅β€˜suc 𝐴) ∈ GCH) β†’ (β„΅β€˜suc 𝐴) β‰ˆ 𝒫 (β„΅β€˜π΄))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105   βŠ† wss 3948  π’« cpw 4602   class class class wbr 5148  dom cdm 5676  Oncon0 6364  suc csuc 6366  β€˜cfv 6543  Ο‰com 7859   β‰ˆ cen 8940   β‰Ό cdom 8941   β‰Ί csdm 8942  harchar 9555  cardccrd 9934  β„΅cale 9935  GCHcgch 10619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9640
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8151  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-seqom 8452  df-1o 8470  df-2o 8471  df-oadd 8474  df-omul 8475  df-oexp 8476  df-er 8707  df-map 8826  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-fsupp 9366  df-oi 9509  df-har 9556  df-wdom 9564  df-cnf 9661  df-dju 9900  df-card 9938  df-aleph 9939  df-fin4 10286  df-gch 10620
This theorem is referenced by:  gch2  10674  gch3  10675
  Copyright terms: Public domain W3C validator