![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gchaleph2 | Structured version Visualization version GIF version |
Description: If (ℵ‘𝐴) and (ℵ‘suc 𝐴) are GCH-sets, then the successor aleph (ℵ‘suc 𝐴) is equinumerous to the powerset of (ℵ‘𝐴). (Contributed by Mario Carneiro, 31-May-2015.) |
Ref | Expression |
---|---|
gchaleph2 | ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → (ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | harcl 9589 | . . 3 ⊢ (har‘(ℵ‘𝐴)) ∈ On | |
2 | alephon 10099 | . . . . 5 ⊢ (ℵ‘𝐴) ∈ On | |
3 | onenon 9979 | . . . . 5 ⊢ ((ℵ‘𝐴) ∈ On → (ℵ‘𝐴) ∈ dom card) | |
4 | harsdom 10025 | . . . . 5 ⊢ ((ℵ‘𝐴) ∈ dom card → (ℵ‘𝐴) ≺ (har‘(ℵ‘𝐴))) | |
5 | 2, 3, 4 | mp2b 10 | . . . 4 ⊢ (ℵ‘𝐴) ≺ (har‘(ℵ‘𝐴)) |
6 | simp1 1133 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → 𝐴 ∈ On) | |
7 | alephgeom 10112 | . . . . . . 7 ⊢ (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴)) | |
8 | 6, 7 | sylib 217 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → ω ⊆ (ℵ‘𝐴)) |
9 | ssdomg 9021 | . . . . . 6 ⊢ ((ℵ‘𝐴) ∈ On → (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴))) | |
10 | 2, 8, 9 | mpsyl 68 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → ω ≼ (ℵ‘𝐴)) |
11 | simp2 1134 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → (ℵ‘𝐴) ∈ GCH) | |
12 | alephsuc 10098 | . . . . . . 7 ⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) = (har‘(ℵ‘𝐴))) | |
13 | 6, 12 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → (ℵ‘suc 𝐴) = (har‘(ℵ‘𝐴))) |
14 | simp3 1135 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → (ℵ‘suc 𝐴) ∈ GCH) | |
15 | 13, 14 | eqeltrrd 2826 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → (har‘(ℵ‘𝐴)) ∈ GCH) |
16 | gchpwdom 10700 | . . . . 5 ⊢ ((ω ≼ (ℵ‘𝐴) ∧ (ℵ‘𝐴) ∈ GCH ∧ (har‘(ℵ‘𝐴)) ∈ GCH) → ((ℵ‘𝐴) ≺ (har‘(ℵ‘𝐴)) ↔ 𝒫 (ℵ‘𝐴) ≼ (har‘(ℵ‘𝐴)))) | |
17 | 10, 11, 15, 16 | syl3anc 1368 | . . . 4 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → ((ℵ‘𝐴) ≺ (har‘(ℵ‘𝐴)) ↔ 𝒫 (ℵ‘𝐴) ≼ (har‘(ℵ‘𝐴)))) |
18 | 5, 17 | mpbii 232 | . . 3 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → 𝒫 (ℵ‘𝐴) ≼ (har‘(ℵ‘𝐴))) |
19 | ondomen 10067 | . . 3 ⊢ (((har‘(ℵ‘𝐴)) ∈ On ∧ 𝒫 (ℵ‘𝐴) ≼ (har‘(ℵ‘𝐴))) → 𝒫 (ℵ‘𝐴) ∈ dom card) | |
20 | 1, 18, 19 | sylancr 585 | . 2 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → 𝒫 (ℵ‘𝐴) ∈ dom card) |
21 | gchaleph 10701 | . 2 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → (ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴)) | |
22 | 20, 21 | syld3an3 1406 | 1 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → (ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ⊆ wss 3944 𝒫 cpw 4604 class class class wbr 5149 dom cdm 5678 Oncon0 6371 suc csuc 6373 ‘cfv 6549 ωcom 7871 ≈ cen 8961 ≼ cdom 8962 ≺ csdm 8963 harchar 9586 cardccrd 9965 ℵcale 9966 GCHcgch 10650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-inf2 9671 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-seqom 8469 df-1o 8487 df-2o 8488 df-oadd 8491 df-omul 8492 df-oexp 8493 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9393 df-oi 9540 df-har 9587 df-wdom 9595 df-cnf 9692 df-dju 9931 df-card 9969 df-aleph 9970 df-fin4 10317 df-gch 10651 |
This theorem is referenced by: gch2 10705 gch3 10706 |
Copyright terms: Public domain | W3C validator |