MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephordilem1 Structured version   Visualization version   GIF version

Theorem alephordilem1 10068
Description: Lemma for alephordi 10069. (Contributed by NM, 23-Oct-2009.) (Revised by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
alephordilem1 (𝐴 ∈ On β†’ (β„΅β€˜π΄) β‰Ί (β„΅β€˜suc 𝐴))

Proof of Theorem alephordilem1
StepHypRef Expression
1 alephon 10064 . . 3 (β„΅β€˜π΄) ∈ On
2 onenon 9944 . . 3 ((β„΅β€˜π΄) ∈ On β†’ (β„΅β€˜π΄) ∈ dom card)
3 harsdom 9990 . . 3 ((β„΅β€˜π΄) ∈ dom card β†’ (β„΅β€˜π΄) β‰Ί (harβ€˜(β„΅β€˜π΄)))
41, 2, 3mp2b 10 . 2 (β„΅β€˜π΄) β‰Ί (harβ€˜(β„΅β€˜π΄))
5 alephsuc 10063 . 2 (𝐴 ∈ On β†’ (β„΅β€˜suc 𝐴) = (harβ€˜(β„΅β€˜π΄)))
64, 5breqtrrid 5187 1 (𝐴 ∈ On β†’ (β„΅β€˜π΄) β‰Ί (β„΅β€˜suc 𝐴))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∈ wcel 2107   class class class wbr 5149  dom cdm 5677  Oncon0 6365  suc csuc 6367  β€˜cfv 6544   β‰Ί csdm 8938  harchar 9551  cardccrd 9930  β„΅cale 9931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-oi 9505  df-har 9552  df-card 9934  df-aleph 9935
This theorem is referenced by:  alephordi  10069  alephsucdom  10074  alephsuc3  10575  alephreg  10577  gchaleph  10666
  Copyright terms: Public domain W3C validator