MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephordilem1 Structured version   Visualization version   GIF version

Theorem alephordilem1 9964
Description: Lemma for alephordi 9965. (Contributed by NM, 23-Oct-2009.) (Revised by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
alephordilem1 (𝐴 ∈ On → (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴))

Proof of Theorem alephordilem1
StepHypRef Expression
1 alephon 9960 . . 3 (ℵ‘𝐴) ∈ On
2 onenon 9842 . . 3 ((ℵ‘𝐴) ∈ On → (ℵ‘𝐴) ∈ dom card)
3 harsdom 9888 . . 3 ((ℵ‘𝐴) ∈ dom card → (ℵ‘𝐴) ≺ (har‘(ℵ‘𝐴)))
41, 2, 3mp2b 10 . 2 (ℵ‘𝐴) ≺ (har‘(ℵ‘𝐴))
5 alephsuc 9959 . 2 (𝐴 ∈ On → (ℵ‘suc 𝐴) = (har‘(ℵ‘𝐴)))
64, 5breqtrrid 5127 1 (𝐴 ∈ On → (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111   class class class wbr 5089  dom cdm 5614  Oncon0 6306  suc csuc 6308  cfv 6481  csdm 8868  harchar 9442  cardccrd 9828  cale 9829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-oi 9396  df-har 9443  df-card 9832  df-aleph 9833
This theorem is referenced by:  alephordi  9965  alephsucdom  9970  alephsuc3  10471  alephreg  10473  gchaleph  10562
  Copyright terms: Public domain W3C validator