![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephordilem1 | Structured version Visualization version GIF version |
Description: Lemma for alephordi 10015. (Contributed by NM, 23-Oct-2009.) (Revised by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
alephordilem1 | β’ (π΄ β On β (β΅βπ΄) βΊ (β΅βsuc π΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephon 10010 | . . 3 β’ (β΅βπ΄) β On | |
2 | onenon 9890 | . . 3 β’ ((β΅βπ΄) β On β (β΅βπ΄) β dom card) | |
3 | harsdom 9936 | . . 3 β’ ((β΅βπ΄) β dom card β (β΅βπ΄) βΊ (harβ(β΅βπ΄))) | |
4 | 1, 2, 3 | mp2b 10 | . 2 β’ (β΅βπ΄) βΊ (harβ(β΅βπ΄)) |
5 | alephsuc 10009 | . 2 β’ (π΄ β On β (β΅βsuc π΄) = (harβ(β΅βπ΄))) | |
6 | 4, 5 | breqtrrid 5144 | 1 β’ (π΄ β On β (β΅βπ΄) βΊ (β΅βsuc π΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2107 class class class wbr 5106 dom cdm 5634 Oncon0 6318 suc csuc 6320 βcfv 6497 βΊ csdm 8885 harchar 9497 cardccrd 9876 β΅cale 9877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-inf2 9582 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-int 4909 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-se 5590 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-isom 6506 df-riota 7314 df-ov 7361 df-om 7804 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-er 8651 df-en 8887 df-dom 8888 df-sdom 8889 df-oi 9451 df-har 9498 df-card 9880 df-aleph 9881 |
This theorem is referenced by: alephordi 10015 alephsucdom 10020 alephsuc3 10521 alephreg 10523 gchaleph 10612 |
Copyright terms: Public domain | W3C validator |