![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephordilem1 | Structured version Visualization version GIF version |
Description: Lemma for alephordi 10092. (Contributed by NM, 23-Oct-2009.) (Revised by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
alephordilem1 | β’ (π΄ β On β (β΅βπ΄) βΊ (β΅βsuc π΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephon 10087 | . . 3 β’ (β΅βπ΄) β On | |
2 | onenon 9967 | . . 3 β’ ((β΅βπ΄) β On β (β΅βπ΄) β dom card) | |
3 | harsdom 10013 | . . 3 β’ ((β΅βπ΄) β dom card β (β΅βπ΄) βΊ (harβ(β΅βπ΄))) | |
4 | 1, 2, 3 | mp2b 10 | . 2 β’ (β΅βπ΄) βΊ (harβ(β΅βπ΄)) |
5 | alephsuc 10086 | . 2 β’ (π΄ β On β (β΅βsuc π΄) = (harβ(β΅βπ΄))) | |
6 | 4, 5 | breqtrrid 5182 | 1 β’ (π΄ β On β (β΅βπ΄) βΊ (β΅βsuc π΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2098 class class class wbr 5144 dom cdm 5673 Oncon0 6365 suc csuc 6367 βcfv 6543 βΊ csdm 8956 harchar 9574 cardccrd 9953 β΅cale 9954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-inf2 9659 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7369 df-ov 7416 df-om 7866 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-oi 9528 df-har 9575 df-card 9957 df-aleph 9958 |
This theorem is referenced by: alephordi 10092 alephsucdom 10097 alephsuc3 10598 alephreg 10600 gchaleph 10689 |
Copyright terms: Public domain | W3C validator |