MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2clim Structured version   Visualization version   GIF version

Theorem 2clim 15454
Description: If two sequences converge to each other, they converge to the same limit. (Contributed by NM, 24-Dec-2005.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
2clim.1 𝑍 = (ℤ𝑀)
2clim.2 (𝜑𝑀 ∈ ℤ)
2clim.3 (𝜑𝐺𝑉)
2clim.5 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
2clim.6 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < 𝑥)
2clim.7 (𝜑𝐹𝐴)
Assertion
Ref Expression
2clim (𝜑𝐺𝐴)
Distinct variable groups:   𝑗,𝑘,𝐴   𝑥,𝑗,𝐹,𝑘   𝑗,𝐺,𝑥   𝑗,𝑀   𝜑,𝑗,𝑘   𝑗,𝑍,𝑘,𝑥   𝑘,𝐺
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝑀(𝑥,𝑘)   𝑉(𝑥,𝑗,𝑘)

Proof of Theorem 2clim
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 2clim.6 . . . . . 6 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < 𝑥)
2 rphalfcl 12942 . . . . . 6 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ+)
3 breq2 5109 . . . . . . . 8 (𝑥 = (𝑦 / 2) → ((abs‘((𝐹𝑘) − (𝐺𝑘))) < 𝑥 ↔ (abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2)))
43rexralbidv 3214 . . . . . . 7 (𝑥 = (𝑦 / 2) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2)))
54rspccva 3580 . . . . . 6 ((∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < 𝑥 ∧ (𝑦 / 2) ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2))
61, 2, 5syl2an 596 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2))
7 2clim.1 . . . . . 6 𝑍 = (ℤ𝑀)
8 2clim.2 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
98adantr 481 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 𝑀 ∈ ℤ)
102adantl 482 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → (𝑦 / 2) ∈ ℝ+)
11 eqidd 2737 . . . . . 6 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
12 2clim.7 . . . . . . 7 (𝜑𝐹𝐴)
1312adantr 481 . . . . . 6 ((𝜑𝑦 ∈ ℝ+) → 𝐹𝐴)
147, 9, 10, 11, 13climi 15392 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2)))
157rexanuz2 15234 . . . . 5 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))))
166, 14, 15sylanbrc 583 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))))
177uztrn2 12782 . . . . . . . 8 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
18 an12 643 . . . . . . . . 9 (((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))) ↔ ((𝐹𝑘) ∈ ℂ ∧ ((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))))
19 simprr 771 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → (𝐹𝑘) ∈ ℂ)
20 2clim.5 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
2120ad2ant2r 745 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → (𝐺𝑘) ∈ ℂ)
2219, 21abssubd 15338 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → (abs‘((𝐹𝑘) − (𝐺𝑘))) = (abs‘((𝐺𝑘) − (𝐹𝑘))))
2322breq1d 5115 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → ((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ↔ (abs‘((𝐺𝑘) − (𝐹𝑘))) < (𝑦 / 2)))
2423anbi1d 630 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → (((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2)) ↔ ((abs‘((𝐺𝑘) − (𝐹𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))))
25 climcl 15381 . . . . . . . . . . . . . . 15 (𝐹𝐴𝐴 ∈ ℂ)
2612, 25syl 17 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ ℂ)
2726ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → 𝐴 ∈ ℂ)
28 rpre 12923 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
2928ad2antlr 725 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → 𝑦 ∈ ℝ)
30 abs3lem 15223 . . . . . . . . . . . . 13 ((((𝐺𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) ∧ ((𝐹𝑘) ∈ ℂ ∧ 𝑦 ∈ ℝ)) → (((abs‘((𝐺𝑘) − (𝐹𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2)) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3121, 27, 19, 29, 30syl22anc 837 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → (((abs‘((𝐺𝑘) − (𝐹𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2)) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3224, 31sylbid 239 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑘𝑍 ∧ (𝐹𝑘) ∈ ℂ)) → (((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2)) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3332anassrs 468 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑘𝑍) ∧ (𝐹𝑘) ∈ ℂ) → (((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2)) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3433expimpd 454 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘𝑍) → (((𝐹𝑘) ∈ ℂ ∧ ((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3518, 34biimtrid 241 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑘𝑍) → (((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3617, 35sylan2 593 . . . . . . 7 (((𝜑𝑦 ∈ ℝ+) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3736anassrs 468 . . . . . 6 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))) → (abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3837ralimdva 3164 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))) → ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
3938reximdva 3165 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((abs‘((𝐹𝑘) − (𝐺𝑘))) < (𝑦 / 2) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < (𝑦 / 2))) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
4016, 39mpd 15 . . 3 ((𝜑𝑦 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦)
4140ralrimiva 3143 . 2 (𝜑 → ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦)
42 2clim.3 . . 3 (𝜑𝐺𝑉)
43 eqidd 2737 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐺𝑘))
447, 8, 42, 43, 26, 20clim2c 15387 . 2 (𝜑 → (𝐺𝐴 ↔ ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐺𝑘) − 𝐴)) < 𝑦))
4541, 44mpbird 256 1 (𝜑𝐺𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073   class class class wbr 5105  cfv 6496  (class class class)co 7357  cc 11049  cr 11050   < clt 11189  cmin 11385   / cdiv 11812  2c2 12208  cz 12499  cuz 12763  +crp 12915  abscabs 15119  cli 15366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370
This theorem is referenced by:  mertens  15771
  Copyright terms: Public domain W3C validator