| Step | Hyp | Ref
| Expression |
| 1 | | 2clim.6 |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐺‘𝑘))) < 𝑥) |
| 2 | | rphalfcl 13062 |
. . . . . 6
⊢ (𝑦 ∈ ℝ+
→ (𝑦 / 2) ∈
ℝ+) |
| 3 | | breq2 5147 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 / 2) → ((abs‘((𝐹‘𝑘) − (𝐺‘𝑘))) < 𝑥 ↔ (abs‘((𝐹‘𝑘) − (𝐺‘𝑘))) < (𝑦 / 2))) |
| 4 | 3 | rexralbidv 3223 |
. . . . . . 7
⊢ (𝑥 = (𝑦 / 2) → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐺‘𝑘))) < 𝑥 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐺‘𝑘))) < (𝑦 / 2))) |
| 5 | 4 | rspccva 3621 |
. . . . . 6
⊢
((∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐺‘𝑘))) < 𝑥 ∧ (𝑦 / 2) ∈ ℝ+) →
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐺‘𝑘))) < (𝑦 / 2)) |
| 6 | 1, 2, 5 | syl2an 596 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) →
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐺‘𝑘))) < (𝑦 / 2)) |
| 7 | | 2clim.1 |
. . . . . 6
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 8 | | 2clim.2 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 9 | 8 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 𝑀 ∈
ℤ) |
| 10 | 2 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → (𝑦 / 2) ∈
ℝ+) |
| 11 | | eqidd 2738 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
| 12 | | 2clim.7 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
| 13 | 12 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) → 𝐹 ⇝ 𝐴) |
| 14 | 7, 9, 10, 11, 13 | climi 15546 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) →
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < (𝑦 / 2))) |
| 15 | 7 | rexanuz2 15388 |
. . . . 5
⊢
(∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)((abs‘((𝐹‘𝑘) − (𝐺‘𝑘))) < (𝑦 / 2) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < (𝑦 / 2))) ↔ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − (𝐺‘𝑘))) < (𝑦 / 2) ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < (𝑦 / 2)))) |
| 16 | 6, 14, 15 | sylanbrc 583 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) →
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((abs‘((𝐹‘𝑘) − (𝐺‘𝑘))) < (𝑦 / 2) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < (𝑦 / 2)))) |
| 17 | 7 | uztrn2 12897 |
. . . . . . . 8
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
| 18 | | an12 645 |
. . . . . . . . 9
⊢
(((abs‘((𝐹‘𝑘) − (𝐺‘𝑘))) < (𝑦 / 2) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < (𝑦 / 2))) ↔ ((𝐹‘𝑘) ∈ ℂ ∧ ((abs‘((𝐹‘𝑘) − (𝐺‘𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < (𝑦 / 2)))) |
| 19 | | simprr 773 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ (𝐹‘𝑘) ∈ ℂ)) → (𝐹‘𝑘) ∈ ℂ) |
| 20 | | 2clim.5 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) |
| 21 | 20 | ad2ant2r 747 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ (𝐹‘𝑘) ∈ ℂ)) → (𝐺‘𝑘) ∈ ℂ) |
| 22 | 19, 21 | abssubd 15492 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ (𝐹‘𝑘) ∈ ℂ)) → (abs‘((𝐹‘𝑘) − (𝐺‘𝑘))) = (abs‘((𝐺‘𝑘) − (𝐹‘𝑘)))) |
| 23 | 22 | breq1d 5153 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ (𝐹‘𝑘) ∈ ℂ)) → ((abs‘((𝐹‘𝑘) − (𝐺‘𝑘))) < (𝑦 / 2) ↔ (abs‘((𝐺‘𝑘) − (𝐹‘𝑘))) < (𝑦 / 2))) |
| 24 | 23 | anbi1d 631 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ (𝐹‘𝑘) ∈ ℂ)) →
(((abs‘((𝐹‘𝑘) − (𝐺‘𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < (𝑦 / 2)) ↔ ((abs‘((𝐺‘𝑘) − (𝐹‘𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < (𝑦 / 2)))) |
| 25 | | climcl 15535 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) |
| 26 | 12, 25 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 27 | 26 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ (𝐹‘𝑘) ∈ ℂ)) → 𝐴 ∈ ℂ) |
| 28 | | rpre 13043 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℝ+
→ 𝑦 ∈
ℝ) |
| 29 | 28 | ad2antlr 727 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ (𝐹‘𝑘) ∈ ℂ)) → 𝑦 ∈ ℝ) |
| 30 | | abs3lem 15377 |
. . . . . . . . . . . . 13
⊢ ((((𝐺‘𝑘) ∈ ℂ ∧ 𝐴 ∈ ℂ) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ 𝑦 ∈ ℝ)) → (((abs‘((𝐺‘𝑘) − (𝐹‘𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < (𝑦 / 2)) → (abs‘((𝐺‘𝑘) − 𝐴)) < 𝑦)) |
| 31 | 21, 27, 19, 29, 30 | syl22anc 839 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ (𝐹‘𝑘) ∈ ℂ)) →
(((abs‘((𝐺‘𝑘) − (𝐹‘𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < (𝑦 / 2)) → (abs‘((𝐺‘𝑘) − 𝐴)) < 𝑦)) |
| 32 | 24, 31 | sylbid 240 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑘 ∈ 𝑍 ∧ (𝐹‘𝑘) ∈ ℂ)) →
(((abs‘((𝐹‘𝑘) − (𝐺‘𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < (𝑦 / 2)) → (abs‘((𝐺‘𝑘) − 𝐴)) < 𝑦)) |
| 33 | 32 | anassrs 467 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ 𝑍) ∧ (𝐹‘𝑘) ∈ ℂ) → (((abs‘((𝐹‘𝑘) − (𝐺‘𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < (𝑦 / 2)) → (abs‘((𝐺‘𝑘) − 𝐴)) < 𝑦)) |
| 34 | 33 | expimpd 453 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ 𝑍) → (((𝐹‘𝑘) ∈ ℂ ∧ ((abs‘((𝐹‘𝑘) − (𝐺‘𝑘))) < (𝑦 / 2) ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < (𝑦 / 2))) → (abs‘((𝐺‘𝑘) − 𝐴)) < 𝑦)) |
| 35 | 18, 34 | biimtrid 242 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ 𝑍) → (((abs‘((𝐹‘𝑘) − (𝐺‘𝑘))) < (𝑦 / 2) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < (𝑦 / 2))) → (abs‘((𝐺‘𝑘) − 𝐴)) < 𝑦)) |
| 36 | 17, 35 | sylan2 593 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (((abs‘((𝐹‘𝑘) − (𝐺‘𝑘))) < (𝑦 / 2) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < (𝑦 / 2))) → (abs‘((𝐺‘𝑘) − 𝐴)) < 𝑦)) |
| 37 | 36 | anassrs 467 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (((abs‘((𝐹‘𝑘) − (𝐺‘𝑘))) < (𝑦 / 2) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < (𝑦 / 2))) → (abs‘((𝐺‘𝑘) − 𝐴)) < 𝑦)) |
| 38 | 37 | ralimdva 3167 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)((abs‘((𝐹‘𝑘) − (𝐺‘𝑘))) < (𝑦 / 2) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < (𝑦 / 2))) → ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐺‘𝑘) − 𝐴)) < 𝑦)) |
| 39 | 38 | reximdva 3168 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) →
(∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((abs‘((𝐹‘𝑘) − (𝐺‘𝑘))) < (𝑦 / 2) ∧ ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < (𝑦 / 2))) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐺‘𝑘) − 𝐴)) < 𝑦)) |
| 40 | 16, 39 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ+) →
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐺‘𝑘) − 𝐴)) < 𝑦) |
| 41 | 40 | ralrimiva 3146 |
. 2
⊢ (𝜑 → ∀𝑦 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐺‘𝑘) − 𝐴)) < 𝑦) |
| 42 | | 2clim.3 |
. . 3
⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| 43 | | eqidd 2738 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐺‘𝑘)) |
| 44 | 7, 8, 42, 43, 26, 20 | clim2c 15541 |
. 2
⊢ (𝜑 → (𝐺 ⇝ 𝐴 ↔ ∀𝑦 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐺‘𝑘) − 𝐴)) < 𝑦)) |
| 45 | 41, 44 | mpbird 257 |
1
⊢ (𝜑 → 𝐺 ⇝ 𝐴) |