Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isnumbasgrplem2 Structured version   Visualization version   GIF version

Theorem isnumbasgrplem2 43061
Description: If the (to be thought of as disjoint, although the proof does not require this) union of a set and its Hartogs number supports a group structure (more generally, a cancellative magma), then the set must be numerable. (Contributed by Stefan O'Rear, 9-Jul-2015.)
Assertion
Ref Expression
isnumbasgrplem2 ((𝑆 ∪ (har‘𝑆)) ∈ (Base “ Grp) → 𝑆 ∈ dom card)

Proof of Theorem isnumbasgrplem2
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basfn 17262 . . 3 Base Fn V
2 ssv 4033 . . 3 Grp ⊆ V
3 fvelimab 6994 . . 3 ((Base Fn V ∧ Grp ⊆ V) → ((𝑆 ∪ (har‘𝑆)) ∈ (Base “ Grp) ↔ ∃𝑥 ∈ Grp (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))))
41, 2, 3mp2an 691 . 2 ((𝑆 ∪ (har‘𝑆)) ∈ (Base “ Grp) ↔ ∃𝑥 ∈ Grp (Base‘𝑥) = (𝑆 ∪ (har‘𝑆)))
5 harcl 9628 . . . . . 6 (har‘𝑆) ∈ On
6 onenon 10018 . . . . . 6 ((har‘𝑆) ∈ On → (har‘𝑆) ∈ dom card)
75, 6ax-mp 5 . . . . 5 (har‘𝑆) ∈ dom card
8 xpnum 10020 . . . . 5 (((har‘𝑆) ∈ dom card ∧ (har‘𝑆) ∈ dom card) → ((har‘𝑆) × (har‘𝑆)) ∈ dom card)
97, 7, 8mp2an 691 . . . 4 ((har‘𝑆) × (har‘𝑆)) ∈ dom card
10 ssun1 4201 . . . . . . . 8 𝑆 ⊆ (𝑆 ∪ (har‘𝑆))
11 simpr 484 . . . . . . . 8 ((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) → (Base‘𝑥) = (𝑆 ∪ (har‘𝑆)))
1210, 11sseqtrrid 4062 . . . . . . 7 ((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) → 𝑆 ⊆ (Base‘𝑥))
13 fvex 6933 . . . . . . . 8 (Base‘𝑥) ∈ V
1413ssex 5339 . . . . . . 7 (𝑆 ⊆ (Base‘𝑥) → 𝑆 ∈ V)
1512, 14syl 17 . . . . . 6 ((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) → 𝑆 ∈ V)
167a1i 11 . . . . . 6 ((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) → (har‘𝑆) ∈ dom card)
17 simp1l 1197 . . . . . . . 8 (((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆𝑐 ∈ (har‘𝑆)) → 𝑥 ∈ Grp)
18123ad2ant1 1133 . . . . . . . . 9 (((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆𝑐 ∈ (har‘𝑆)) → 𝑆 ⊆ (Base‘𝑥))
19 simp2 1137 . . . . . . . . 9 (((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆𝑐 ∈ (har‘𝑆)) → 𝑎𝑆)
2018, 19sseldd 4009 . . . . . . . 8 (((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆𝑐 ∈ (har‘𝑆)) → 𝑎 ∈ (Base‘𝑥))
21 ssun2 4202 . . . . . . . . . . 11 (har‘𝑆) ⊆ (𝑆 ∪ (har‘𝑆))
2221, 11sseqtrrid 4062 . . . . . . . . . 10 ((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) → (har‘𝑆) ⊆ (Base‘𝑥))
23223ad2ant1 1133 . . . . . . . . 9 (((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆𝑐 ∈ (har‘𝑆)) → (har‘𝑆) ⊆ (Base‘𝑥))
24 simp3 1138 . . . . . . . . 9 (((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆𝑐 ∈ (har‘𝑆)) → 𝑐 ∈ (har‘𝑆))
2523, 24sseldd 4009 . . . . . . . 8 (((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆𝑐 ∈ (har‘𝑆)) → 𝑐 ∈ (Base‘𝑥))
26 eqid 2740 . . . . . . . . 9 (Base‘𝑥) = (Base‘𝑥)
27 eqid 2740 . . . . . . . . 9 (+g𝑥) = (+g𝑥)
2826, 27grpcl 18981 . . . . . . . 8 ((𝑥 ∈ Grp ∧ 𝑎 ∈ (Base‘𝑥) ∧ 𝑐 ∈ (Base‘𝑥)) → (𝑎(+g𝑥)𝑐) ∈ (Base‘𝑥))
2917, 20, 25, 28syl3anc 1371 . . . . . . 7 (((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆𝑐 ∈ (har‘𝑆)) → (𝑎(+g𝑥)𝑐) ∈ (Base‘𝑥))
30 simp1r 1198 . . . . . . 7 (((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆𝑐 ∈ (har‘𝑆)) → (Base‘𝑥) = (𝑆 ∪ (har‘𝑆)))
3129, 30eleqtrd 2846 . . . . . 6 (((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆𝑐 ∈ (har‘𝑆)) → (𝑎(+g𝑥)𝑐) ∈ (𝑆 ∪ (har‘𝑆)))
32 simplll 774 . . . . . . 7 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (har‘𝑆) ∧ 𝑑 ∈ (har‘𝑆))) → 𝑥 ∈ Grp)
3322ad2antrr 725 . . . . . . . 8 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (har‘𝑆) ∧ 𝑑 ∈ (har‘𝑆))) → (har‘𝑆) ⊆ (Base‘𝑥))
34 simprl 770 . . . . . . . 8 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (har‘𝑆) ∧ 𝑑 ∈ (har‘𝑆))) → 𝑐 ∈ (har‘𝑆))
3533, 34sseldd 4009 . . . . . . 7 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (har‘𝑆) ∧ 𝑑 ∈ (har‘𝑆))) → 𝑐 ∈ (Base‘𝑥))
36 simprr 772 . . . . . . . 8 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (har‘𝑆) ∧ 𝑑 ∈ (har‘𝑆))) → 𝑑 ∈ (har‘𝑆))
3733, 36sseldd 4009 . . . . . . 7 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (har‘𝑆) ∧ 𝑑 ∈ (har‘𝑆))) → 𝑑 ∈ (Base‘𝑥))
3812ad2antrr 725 . . . . . . . 8 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (har‘𝑆) ∧ 𝑑 ∈ (har‘𝑆))) → 𝑆 ⊆ (Base‘𝑥))
39 simplr 768 . . . . . . . 8 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (har‘𝑆) ∧ 𝑑 ∈ (har‘𝑆))) → 𝑎𝑆)
4038, 39sseldd 4009 . . . . . . 7 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (har‘𝑆) ∧ 𝑑 ∈ (har‘𝑆))) → 𝑎 ∈ (Base‘𝑥))
4126, 27grplcan 19040 . . . . . . 7 ((𝑥 ∈ Grp ∧ (𝑐 ∈ (Base‘𝑥) ∧ 𝑑 ∈ (Base‘𝑥) ∧ 𝑎 ∈ (Base‘𝑥))) → ((𝑎(+g𝑥)𝑐) = (𝑎(+g𝑥)𝑑) ↔ 𝑐 = 𝑑))
4232, 35, 37, 40, 41syl13anc 1372 . . . . . 6 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (har‘𝑆) ∧ 𝑑 ∈ (har‘𝑆))) → ((𝑎(+g𝑥)𝑐) = (𝑎(+g𝑥)𝑑) ↔ 𝑐 = 𝑑))
43 simplll 774 . . . . . . 7 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑏 ∈ (har‘𝑆)) ∧ (𝑎𝑆𝑑𝑆)) → 𝑥 ∈ Grp)
4412ad2antrr 725 . . . . . . . 8 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑏 ∈ (har‘𝑆)) ∧ (𝑎𝑆𝑑𝑆)) → 𝑆 ⊆ (Base‘𝑥))
45 simprr 772 . . . . . . . 8 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑏 ∈ (har‘𝑆)) ∧ (𝑎𝑆𝑑𝑆)) → 𝑑𝑆)
4644, 45sseldd 4009 . . . . . . 7 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑏 ∈ (har‘𝑆)) ∧ (𝑎𝑆𝑑𝑆)) → 𝑑 ∈ (Base‘𝑥))
47 simprl 770 . . . . . . . 8 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑏 ∈ (har‘𝑆)) ∧ (𝑎𝑆𝑑𝑆)) → 𝑎𝑆)
4844, 47sseldd 4009 . . . . . . 7 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑏 ∈ (har‘𝑆)) ∧ (𝑎𝑆𝑑𝑆)) → 𝑎 ∈ (Base‘𝑥))
4922ad2antrr 725 . . . . . . . 8 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑏 ∈ (har‘𝑆)) ∧ (𝑎𝑆𝑑𝑆)) → (har‘𝑆) ⊆ (Base‘𝑥))
50 simplr 768 . . . . . . . 8 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑏 ∈ (har‘𝑆)) ∧ (𝑎𝑆𝑑𝑆)) → 𝑏 ∈ (har‘𝑆))
5149, 50sseldd 4009 . . . . . . 7 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑏 ∈ (har‘𝑆)) ∧ (𝑎𝑆𝑑𝑆)) → 𝑏 ∈ (Base‘𝑥))
5226, 27grprcan 19013 . . . . . . 7 ((𝑥 ∈ Grp ∧ (𝑑 ∈ (Base‘𝑥) ∧ 𝑎 ∈ (Base‘𝑥) ∧ 𝑏 ∈ (Base‘𝑥))) → ((𝑑(+g𝑥)𝑏) = (𝑎(+g𝑥)𝑏) ↔ 𝑑 = 𝑎))
5343, 46, 48, 51, 52syl13anc 1372 . . . . . 6 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑏 ∈ (har‘𝑆)) ∧ (𝑎𝑆𝑑𝑆)) → ((𝑑(+g𝑥)𝑏) = (𝑎(+g𝑥)𝑏) ↔ 𝑑 = 𝑎))
54 harndom 9631 . . . . . . 7 ¬ (har‘𝑆) ≼ 𝑆
5554a1i 11 . . . . . 6 ((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) → ¬ (har‘𝑆) ≼ 𝑆)
5615, 16, 16, 31, 42, 53, 55unxpwdom3 43052 . . . . 5 ((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) → 𝑆* ((har‘𝑆) × (har‘𝑆)))
57 wdomnumr 10133 . . . . . 6 (((har‘𝑆) × (har‘𝑆)) ∈ dom card → (𝑆* ((har‘𝑆) × (har‘𝑆)) ↔ 𝑆 ≼ ((har‘𝑆) × (har‘𝑆))))
589, 57ax-mp 5 . . . . 5 (𝑆* ((har‘𝑆) × (har‘𝑆)) ↔ 𝑆 ≼ ((har‘𝑆) × (har‘𝑆)))
5956, 58sylib 218 . . . 4 ((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) → 𝑆 ≼ ((har‘𝑆) × (har‘𝑆)))
60 numdom 10107 . . . 4 ((((har‘𝑆) × (har‘𝑆)) ∈ dom card ∧ 𝑆 ≼ ((har‘𝑆) × (har‘𝑆))) → 𝑆 ∈ dom card)
619, 59, 60sylancr 586 . . 3 ((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) → 𝑆 ∈ dom card)
6261rexlimiva 3153 . 2 (∃𝑥 ∈ Grp (Base‘𝑥) = (𝑆 ∪ (har‘𝑆)) → 𝑆 ∈ dom card)
634, 62sylbi 217 1 ((𝑆 ∪ (har‘𝑆)) ∈ (Base “ Grp) → 𝑆 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  Vcvv 3488  cun 3974  wss 3976   class class class wbr 5166   × cxp 5698  dom cdm 5700  cima 5703  Oncon0 6395   Fn wfn 6568  cfv 6573  (class class class)co 7448  cdom 9001  harchar 9625  * cwdom 9633  cardccrd 10004  Basecbs 17258  +gcplusg 17311  Grpcgrp 18973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-1cn 11242  ax-addcl 11244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-oi 9579  df-har 9626  df-wdom 9634  df-card 10008  df-acn 10011  df-nn 12294  df-slot 17229  df-ndx 17241  df-base 17259  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977
This theorem is referenced by:  isnumbasabl  43063  isnumbasgrp  43064
  Copyright terms: Public domain W3C validator