Step | Hyp | Ref
| Expression |
1 | | basfn 16916 |
. . 3
⊢ Base Fn
V |
2 | | ssv 3945 |
. . 3
⊢ Grp
⊆ V |
3 | | fvelimab 6841 |
. . 3
⊢ ((Base Fn
V ∧ Grp ⊆ V) → ((𝑆 ∪ (har‘𝑆)) ∈ (Base “ Grp) ↔
∃𝑥 ∈ Grp
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆)))) |
4 | 1, 2, 3 | mp2an 689 |
. 2
⊢ ((𝑆 ∪ (har‘𝑆)) ∈ (Base “ Grp)
↔ ∃𝑥 ∈ Grp
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) |
5 | | harcl 9318 |
. . . . . 6
⊢
(har‘𝑆) ∈
On |
6 | | onenon 9707 |
. . . . . 6
⊢
((har‘𝑆)
∈ On → (har‘𝑆) ∈ dom card) |
7 | 5, 6 | ax-mp 5 |
. . . . 5
⊢
(har‘𝑆) ∈
dom card |
8 | | xpnum 9709 |
. . . . 5
⊢
(((har‘𝑆)
∈ dom card ∧ (har‘𝑆) ∈ dom card) → ((har‘𝑆) × (har‘𝑆)) ∈ dom
card) |
9 | 7, 7, 8 | mp2an 689 |
. . . 4
⊢
((har‘𝑆)
× (har‘𝑆))
∈ dom card |
10 | | ssun1 4106 |
. . . . . . . 8
⊢ 𝑆 ⊆ (𝑆 ∪ (har‘𝑆)) |
11 | | simpr 485 |
. . . . . . . 8
⊢ ((𝑥 ∈ Grp ∧
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) → (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) |
12 | 10, 11 | sseqtrrid 3974 |
. . . . . . 7
⊢ ((𝑥 ∈ Grp ∧
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) → 𝑆 ⊆ (Base‘𝑥)) |
13 | | fvex 6787 |
. . . . . . . 8
⊢
(Base‘𝑥)
∈ V |
14 | 13 | ssex 5245 |
. . . . . . 7
⊢ (𝑆 ⊆ (Base‘𝑥) → 𝑆 ∈ V) |
15 | 12, 14 | syl 17 |
. . . . . 6
⊢ ((𝑥 ∈ Grp ∧
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) → 𝑆 ∈ V) |
16 | 7 | a1i 11 |
. . . . . 6
⊢ ((𝑥 ∈ Grp ∧
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) → (har‘𝑆) ∈ dom
card) |
17 | | simp1l 1196 |
. . . . . . . 8
⊢ (((𝑥 ∈ Grp ∧
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎 ∈ 𝑆 ∧ 𝑐 ∈ (har‘𝑆)) → 𝑥 ∈ Grp) |
18 | 12 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ (((𝑥 ∈ Grp ∧
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎 ∈ 𝑆 ∧ 𝑐 ∈ (har‘𝑆)) → 𝑆 ⊆ (Base‘𝑥)) |
19 | | simp2 1136 |
. . . . . . . . 9
⊢ (((𝑥 ∈ Grp ∧
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎 ∈ 𝑆 ∧ 𝑐 ∈ (har‘𝑆)) → 𝑎 ∈ 𝑆) |
20 | 18, 19 | sseldd 3922 |
. . . . . . . 8
⊢ (((𝑥 ∈ Grp ∧
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎 ∈ 𝑆 ∧ 𝑐 ∈ (har‘𝑆)) → 𝑎 ∈ (Base‘𝑥)) |
21 | | ssun2 4107 |
. . . . . . . . . . 11
⊢
(har‘𝑆)
⊆ (𝑆 ∪
(har‘𝑆)) |
22 | 21, 11 | sseqtrrid 3974 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ Grp ∧
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) → (har‘𝑆) ⊆ (Base‘𝑥)) |
23 | 22 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ (((𝑥 ∈ Grp ∧
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎 ∈ 𝑆 ∧ 𝑐 ∈ (har‘𝑆)) → (har‘𝑆) ⊆ (Base‘𝑥)) |
24 | | simp3 1137 |
. . . . . . . . 9
⊢ (((𝑥 ∈ Grp ∧
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎 ∈ 𝑆 ∧ 𝑐 ∈ (har‘𝑆)) → 𝑐 ∈ (har‘𝑆)) |
25 | 23, 24 | sseldd 3922 |
. . . . . . . 8
⊢ (((𝑥 ∈ Grp ∧
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎 ∈ 𝑆 ∧ 𝑐 ∈ (har‘𝑆)) → 𝑐 ∈ (Base‘𝑥)) |
26 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝑥) =
(Base‘𝑥) |
27 | | eqid 2738 |
. . . . . . . . 9
⊢
(+g‘𝑥) = (+g‘𝑥) |
28 | 26, 27 | grpcl 18585 |
. . . . . . . 8
⊢ ((𝑥 ∈ Grp ∧ 𝑎 ∈ (Base‘𝑥) ∧ 𝑐 ∈ (Base‘𝑥)) → (𝑎(+g‘𝑥)𝑐) ∈ (Base‘𝑥)) |
29 | 17, 20, 25, 28 | syl3anc 1370 |
. . . . . . 7
⊢ (((𝑥 ∈ Grp ∧
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎 ∈ 𝑆 ∧ 𝑐 ∈ (har‘𝑆)) → (𝑎(+g‘𝑥)𝑐) ∈ (Base‘𝑥)) |
30 | | simp1r 1197 |
. . . . . . 7
⊢ (((𝑥 ∈ Grp ∧
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎 ∈ 𝑆 ∧ 𝑐 ∈ (har‘𝑆)) → (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) |
31 | 29, 30 | eleqtrd 2841 |
. . . . . 6
⊢ (((𝑥 ∈ Grp ∧
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎 ∈ 𝑆 ∧ 𝑐 ∈ (har‘𝑆)) → (𝑎(+g‘𝑥)𝑐) ∈ (𝑆 ∪ (har‘𝑆))) |
32 | | simplll 772 |
. . . . . . 7
⊢ ((((𝑥 ∈ Grp ∧
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎 ∈ 𝑆) ∧ (𝑐 ∈ (har‘𝑆) ∧ 𝑑 ∈ (har‘𝑆))) → 𝑥 ∈ Grp) |
33 | 22 | ad2antrr 723 |
. . . . . . . 8
⊢ ((((𝑥 ∈ Grp ∧
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎 ∈ 𝑆) ∧ (𝑐 ∈ (har‘𝑆) ∧ 𝑑 ∈ (har‘𝑆))) → (har‘𝑆) ⊆ (Base‘𝑥)) |
34 | | simprl 768 |
. . . . . . . 8
⊢ ((((𝑥 ∈ Grp ∧
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎 ∈ 𝑆) ∧ (𝑐 ∈ (har‘𝑆) ∧ 𝑑 ∈ (har‘𝑆))) → 𝑐 ∈ (har‘𝑆)) |
35 | 33, 34 | sseldd 3922 |
. . . . . . 7
⊢ ((((𝑥 ∈ Grp ∧
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎 ∈ 𝑆) ∧ (𝑐 ∈ (har‘𝑆) ∧ 𝑑 ∈ (har‘𝑆))) → 𝑐 ∈ (Base‘𝑥)) |
36 | | simprr 770 |
. . . . . . . 8
⊢ ((((𝑥 ∈ Grp ∧
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎 ∈ 𝑆) ∧ (𝑐 ∈ (har‘𝑆) ∧ 𝑑 ∈ (har‘𝑆))) → 𝑑 ∈ (har‘𝑆)) |
37 | 33, 36 | sseldd 3922 |
. . . . . . 7
⊢ ((((𝑥 ∈ Grp ∧
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎 ∈ 𝑆) ∧ (𝑐 ∈ (har‘𝑆) ∧ 𝑑 ∈ (har‘𝑆))) → 𝑑 ∈ (Base‘𝑥)) |
38 | 12 | ad2antrr 723 |
. . . . . . . 8
⊢ ((((𝑥 ∈ Grp ∧
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎 ∈ 𝑆) ∧ (𝑐 ∈ (har‘𝑆) ∧ 𝑑 ∈ (har‘𝑆))) → 𝑆 ⊆ (Base‘𝑥)) |
39 | | simplr 766 |
. . . . . . . 8
⊢ ((((𝑥 ∈ Grp ∧
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎 ∈ 𝑆) ∧ (𝑐 ∈ (har‘𝑆) ∧ 𝑑 ∈ (har‘𝑆))) → 𝑎 ∈ 𝑆) |
40 | 38, 39 | sseldd 3922 |
. . . . . . 7
⊢ ((((𝑥 ∈ Grp ∧
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎 ∈ 𝑆) ∧ (𝑐 ∈ (har‘𝑆) ∧ 𝑑 ∈ (har‘𝑆))) → 𝑎 ∈ (Base‘𝑥)) |
41 | 26, 27 | grplcan 18637 |
. . . . . . 7
⊢ ((𝑥 ∈ Grp ∧ (𝑐 ∈ (Base‘𝑥) ∧ 𝑑 ∈ (Base‘𝑥) ∧ 𝑎 ∈ (Base‘𝑥))) → ((𝑎(+g‘𝑥)𝑐) = (𝑎(+g‘𝑥)𝑑) ↔ 𝑐 = 𝑑)) |
42 | 32, 35, 37, 40, 41 | syl13anc 1371 |
. . . . . 6
⊢ ((((𝑥 ∈ Grp ∧
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎 ∈ 𝑆) ∧ (𝑐 ∈ (har‘𝑆) ∧ 𝑑 ∈ (har‘𝑆))) → ((𝑎(+g‘𝑥)𝑐) = (𝑎(+g‘𝑥)𝑑) ↔ 𝑐 = 𝑑)) |
43 | | simplll 772 |
. . . . . . 7
⊢ ((((𝑥 ∈ Grp ∧
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑏 ∈ (har‘𝑆)) ∧ (𝑎 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆)) → 𝑥 ∈ Grp) |
44 | 12 | ad2antrr 723 |
. . . . . . . 8
⊢ ((((𝑥 ∈ Grp ∧
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑏 ∈ (har‘𝑆)) ∧ (𝑎 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆)) → 𝑆 ⊆ (Base‘𝑥)) |
45 | | simprr 770 |
. . . . . . . 8
⊢ ((((𝑥 ∈ Grp ∧
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑏 ∈ (har‘𝑆)) ∧ (𝑎 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆)) → 𝑑 ∈ 𝑆) |
46 | 44, 45 | sseldd 3922 |
. . . . . . 7
⊢ ((((𝑥 ∈ Grp ∧
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑏 ∈ (har‘𝑆)) ∧ (𝑎 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆)) → 𝑑 ∈ (Base‘𝑥)) |
47 | | simprl 768 |
. . . . . . . 8
⊢ ((((𝑥 ∈ Grp ∧
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑏 ∈ (har‘𝑆)) ∧ (𝑎 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆)) → 𝑎 ∈ 𝑆) |
48 | 44, 47 | sseldd 3922 |
. . . . . . 7
⊢ ((((𝑥 ∈ Grp ∧
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑏 ∈ (har‘𝑆)) ∧ (𝑎 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆)) → 𝑎 ∈ (Base‘𝑥)) |
49 | 22 | ad2antrr 723 |
. . . . . . . 8
⊢ ((((𝑥 ∈ Grp ∧
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑏 ∈ (har‘𝑆)) ∧ (𝑎 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆)) → (har‘𝑆) ⊆ (Base‘𝑥)) |
50 | | simplr 766 |
. . . . . . . 8
⊢ ((((𝑥 ∈ Grp ∧
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑏 ∈ (har‘𝑆)) ∧ (𝑎 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆)) → 𝑏 ∈ (har‘𝑆)) |
51 | 49, 50 | sseldd 3922 |
. . . . . . 7
⊢ ((((𝑥 ∈ Grp ∧
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑏 ∈ (har‘𝑆)) ∧ (𝑎 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆)) → 𝑏 ∈ (Base‘𝑥)) |
52 | 26, 27 | grprcan 18613 |
. . . . . . 7
⊢ ((𝑥 ∈ Grp ∧ (𝑑 ∈ (Base‘𝑥) ∧ 𝑎 ∈ (Base‘𝑥) ∧ 𝑏 ∈ (Base‘𝑥))) → ((𝑑(+g‘𝑥)𝑏) = (𝑎(+g‘𝑥)𝑏) ↔ 𝑑 = 𝑎)) |
53 | 43, 46, 48, 51, 52 | syl13anc 1371 |
. . . . . 6
⊢ ((((𝑥 ∈ Grp ∧
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑏 ∈ (har‘𝑆)) ∧ (𝑎 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆)) → ((𝑑(+g‘𝑥)𝑏) = (𝑎(+g‘𝑥)𝑏) ↔ 𝑑 = 𝑎)) |
54 | | harndom 9321 |
. . . . . . 7
⊢ ¬
(har‘𝑆) ≼ 𝑆 |
55 | 54 | a1i 11 |
. . . . . 6
⊢ ((𝑥 ∈ Grp ∧
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) → ¬
(har‘𝑆) ≼ 𝑆) |
56 | 15, 16, 16, 31, 42, 53, 55 | unxpwdom3 40920 |
. . . . 5
⊢ ((𝑥 ∈ Grp ∧
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) → 𝑆 ≼* ((har‘𝑆) × (har‘𝑆))) |
57 | | wdomnumr 9820 |
. . . . . 6
⊢
(((har‘𝑆)
× (har‘𝑆))
∈ dom card → (𝑆
≼* ((har‘𝑆) × (har‘𝑆)) ↔ 𝑆 ≼ ((har‘𝑆) × (har‘𝑆)))) |
58 | 9, 57 | ax-mp 5 |
. . . . 5
⊢ (𝑆 ≼*
((har‘𝑆) ×
(har‘𝑆)) ↔ 𝑆 ≼ ((har‘𝑆) × (har‘𝑆))) |
59 | 56, 58 | sylib 217 |
. . . 4
⊢ ((𝑥 ∈ Grp ∧
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) → 𝑆 ≼ ((har‘𝑆) × (har‘𝑆))) |
60 | | numdom 9794 |
. . . 4
⊢
((((har‘𝑆)
× (har‘𝑆))
∈ dom card ∧ 𝑆
≼ ((har‘𝑆)
× (har‘𝑆)))
→ 𝑆 ∈ dom
card) |
61 | 9, 59, 60 | sylancr 587 |
. . 3
⊢ ((𝑥 ∈ Grp ∧
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) → 𝑆 ∈ dom card) |
62 | 61 | rexlimiva 3210 |
. 2
⊢
(∃𝑥 ∈ Grp
(Base‘𝑥) = (𝑆 ∪ (har‘𝑆)) → 𝑆 ∈ dom card) |
63 | 4, 62 | sylbi 216 |
1
⊢ ((𝑆 ∪ (har‘𝑆)) ∈ (Base “ Grp)
→ 𝑆 ∈ dom
card) |