![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > breprexplemb | Structured version Visualization version GIF version |
Description: Lemma for breprexp 34641 (closure). (Contributed by Thierry Arnoux, 7-Dec-2021.) |
Ref | Expression |
---|---|
breprexp.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
breprexp.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) |
breprexp.z | ⊢ (𝜑 → 𝑍 ∈ ℂ) |
breprexp.h | ⊢ (𝜑 → 𝐿:(0..^𝑆)⟶(ℂ ↑m ℕ)) |
breprexplemb.x | ⊢ (𝜑 → 𝑋 ∈ (0..^𝑆)) |
breprexplemb.y | ⊢ (𝜑 → 𝑌 ∈ ℕ) |
Ref | Expression |
---|---|
breprexplemb | ⊢ (𝜑 → ((𝐿‘𝑋)‘𝑌) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breprexp.h | . . . 4 ⊢ (𝜑 → 𝐿:(0..^𝑆)⟶(ℂ ↑m ℕ)) | |
2 | breprexplemb.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (0..^𝑆)) | |
3 | 1, 2 | ffvelcdmd 7112 | . . 3 ⊢ (𝜑 → (𝐿‘𝑋) ∈ (ℂ ↑m ℕ)) |
4 | cnex 11243 | . . . 4 ⊢ ℂ ∈ V | |
5 | nnex 12279 | . . . 4 ⊢ ℕ ∈ V | |
6 | 4, 5 | elmap 8919 | . . 3 ⊢ ((𝐿‘𝑋) ∈ (ℂ ↑m ℕ) ↔ (𝐿‘𝑋):ℕ⟶ℂ) |
7 | 3, 6 | sylib 218 | . 2 ⊢ (𝜑 → (𝐿‘𝑋):ℕ⟶ℂ) |
8 | breprexplemb.y | . 2 ⊢ (𝜑 → 𝑌 ∈ ℕ) | |
9 | 7, 8 | ffvelcdmd 7112 | 1 ⊢ (𝜑 → ((𝐿‘𝑋)‘𝑌) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⟶wf 6565 ‘cfv 6569 (class class class)co 7438 ↑m cmap 8874 ℂcc 11160 0cc0 11162 ℕcn 12273 ℕ0cn0 12533 ..^cfzo 13700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-1cn 11220 ax-addcl 11222 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-map 8876 df-nn 12274 |
This theorem is referenced by: breprexplemc 34640 circlemeth 34648 |
Copyright terms: Public domain | W3C validator |