Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  breprexplemb Structured version   Visualization version   GIF version

Theorem breprexplemb 33474
Description: Lemma for breprexp 33476 (closure). (Contributed by Thierry Arnoux, 7-Dec-2021.)
Hypotheses
Ref Expression
breprexp.n (𝜑𝑁 ∈ ℕ0)
breprexp.s (𝜑𝑆 ∈ ℕ0)
breprexp.z (𝜑𝑍 ∈ ℂ)
breprexp.h (𝜑𝐿:(0..^𝑆)⟶(ℂ ↑m ℕ))
breprexplemb.x (𝜑𝑋 ∈ (0..^𝑆))
breprexplemb.y (𝜑𝑌 ∈ ℕ)
Assertion
Ref Expression
breprexplemb (𝜑 → ((𝐿𝑋)‘𝑌) ∈ ℂ)

Proof of Theorem breprexplemb
StepHypRef Expression
1 breprexp.h . . . 4 (𝜑𝐿:(0..^𝑆)⟶(ℂ ↑m ℕ))
2 breprexplemb.x . . . 4 (𝜑𝑋 ∈ (0..^𝑆))
31, 2ffvelcdmd 7072 . . 3 (𝜑 → (𝐿𝑋) ∈ (ℂ ↑m ℕ))
4 cnex 11173 . . . 4 ℂ ∈ V
5 nnex 12200 . . . 4 ℕ ∈ V
64, 5elmap 8848 . . 3 ((𝐿𝑋) ∈ (ℂ ↑m ℕ) ↔ (𝐿𝑋):ℕ⟶ℂ)
73, 6sylib 217 . 2 (𝜑 → (𝐿𝑋):ℕ⟶ℂ)
8 breprexplemb.y . 2 (𝜑𝑌 ∈ ℕ)
97, 8ffvelcdmd 7072 1 (𝜑 → ((𝐿𝑋)‘𝑌) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wf 6528  cfv 6532  (class class class)co 7393  m cmap 8803  cc 11090  0cc0 11092  cn 12194  0cn0 12454  ..^cfzo 13609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-1cn 11150  ax-addcl 11152
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-map 8805  df-nn 12195
This theorem is referenced by:  breprexplemc  33475  circlemeth  33483
  Copyright terms: Public domain W3C validator