| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > breprexplemb | Structured version Visualization version GIF version | ||
| Description: Lemma for breprexp 34624 (closure). (Contributed by Thierry Arnoux, 7-Dec-2021.) |
| Ref | Expression |
|---|---|
| breprexp.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| breprexp.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) |
| breprexp.z | ⊢ (𝜑 → 𝑍 ∈ ℂ) |
| breprexp.h | ⊢ (𝜑 → 𝐿:(0..^𝑆)⟶(ℂ ↑m ℕ)) |
| breprexplemb.x | ⊢ (𝜑 → 𝑋 ∈ (0..^𝑆)) |
| breprexplemb.y | ⊢ (𝜑 → 𝑌 ∈ ℕ) |
| Ref | Expression |
|---|---|
| breprexplemb | ⊢ (𝜑 → ((𝐿‘𝑋)‘𝑌) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breprexp.h | . . . 4 ⊢ (𝜑 → 𝐿:(0..^𝑆)⟶(ℂ ↑m ℕ)) | |
| 2 | breprexplemb.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (0..^𝑆)) | |
| 3 | 1, 2 | ffvelcdmd 7057 | . . 3 ⊢ (𝜑 → (𝐿‘𝑋) ∈ (ℂ ↑m ℕ)) |
| 4 | cnex 11149 | . . . 4 ⊢ ℂ ∈ V | |
| 5 | nnex 12192 | . . . 4 ⊢ ℕ ∈ V | |
| 6 | 4, 5 | elmap 8844 | . . 3 ⊢ ((𝐿‘𝑋) ∈ (ℂ ↑m ℕ) ↔ (𝐿‘𝑋):ℕ⟶ℂ) |
| 7 | 3, 6 | sylib 218 | . 2 ⊢ (𝜑 → (𝐿‘𝑋):ℕ⟶ℂ) |
| 8 | breprexplemb.y | . 2 ⊢ (𝜑 → 𝑌 ∈ ℕ) | |
| 9 | 7, 8 | ffvelcdmd 7057 | 1 ⊢ (𝜑 → ((𝐿‘𝑋)‘𝑌) ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 ℂcc 11066 0cc0 11068 ℕcn 12186 ℕ0cn0 12442 ..^cfzo 13615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-1cn 11126 ax-addcl 11128 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-map 8801 df-nn 12187 |
| This theorem is referenced by: breprexplemc 34623 circlemeth 34631 |
| Copyright terms: Public domain | W3C validator |