Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hashen | Structured version Visualization version GIF version |
Description: Two finite sets have the same number of elements iff they are equinumerous. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
hashen | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ 𝐴 ≈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6783 | . . . 4 ⊢ ((♯‘𝐴) = (♯‘𝐵) → (◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(♯‘𝐴)) = (◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(♯‘𝐵))) | |
2 | eqid 2739 | . . . . . 6 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) | |
3 | 2 | hashginv 14057 | . . . . 5 ⊢ (𝐴 ∈ Fin → (◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(♯‘𝐴)) = (card‘𝐴)) |
4 | 2 | hashginv 14057 | . . . . 5 ⊢ (𝐵 ∈ Fin → (◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(♯‘𝐵)) = (card‘𝐵)) |
5 | 3, 4 | eqeqan12d 2753 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(♯‘𝐴)) = (◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(♯‘𝐵)) ↔ (card‘𝐴) = (card‘𝐵))) |
6 | 1, 5 | syl5ib 243 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) → (card‘𝐴) = (card‘𝐵))) |
7 | fveq2 6783 | . . . 4 ⊢ ((card‘𝐴) = (card‘𝐵) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵))) | |
8 | 2 | hashgval 14056 | . . . . 5 ⊢ (𝐴 ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) = (♯‘𝐴)) |
9 | 2 | hashgval 14056 | . . . . 5 ⊢ (𝐵 ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) = (♯‘𝐵)) |
10 | 8, 9 | eqeqan12d 2753 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) ↔ (♯‘𝐴) = (♯‘𝐵))) |
11 | 7, 10 | syl5ib 243 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) = (card‘𝐵) → (♯‘𝐴) = (♯‘𝐵))) |
12 | 6, 11 | impbid 211 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ (card‘𝐴) = (card‘𝐵))) |
13 | finnum 9715 | . . 3 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom card) | |
14 | finnum 9715 | . . 3 ⊢ (𝐵 ∈ Fin → 𝐵 ∈ dom card) | |
15 | carden2 9754 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) = (card‘𝐵) ↔ 𝐴 ≈ 𝐵)) | |
16 | 13, 14, 15 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) = (card‘𝐵) ↔ 𝐴 ≈ 𝐵)) |
17 | 12, 16 | bitrd 278 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ 𝐴 ≈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2107 Vcvv 3433 class class class wbr 5075 ↦ cmpt 5158 ◡ccnv 5589 dom cdm 5590 ↾ cres 5592 ‘cfv 6437 (class class class)co 7284 ωcom 7721 reccrdg 8249 ≈ cen 8739 Fincfn 8742 cardccrd 9702 0cc0 10880 1c1 10881 + caddc 10883 ♯chash 14053 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-int 4881 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-om 7722 df-2nd 7841 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-1o 8306 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-fin 8746 df-card 9706 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-nn 11983 df-n0 12243 df-z 12329 df-uz 12592 df-hash 14054 |
This theorem is referenced by: hasheni 14071 hasheqf1o 14072 isfinite4 14086 hasheq0 14087 hashsng 14093 hashen1 14094 hashsdom 14105 hash1snb 14143 hashxplem 14157 hashmap 14159 hashpw 14160 hashbclem 14173 phphashd 14189 hash2pr 14192 pr2pwpr 14202 hash3tr 14213 isercolllem2 15386 isercoll 15388 summolem3 15435 mertenslem1 15605 prodmolem3 15652 bpolylem 15767 hashdvds 16485 crth 16488 phimullem 16489 eulerth 16493 4sqlem11 16665 lagsubg2 18826 dfod2 19180 sylow1lem2 19213 sylow2alem2 19232 slwhash 19238 sylow2 19240 sylow3lem1 19241 cyggenod 19493 lt6abl 19505 ablfac1c 19683 ablfac1eu 19685 ablfaclem3 19699 fta1blem 25342 vieta1 25481 isppw 26272 clwlknon2num 28741 numclwlk1lem2 28743 fisshasheq 33082 derangen2 33145 erdsze2lem1 33174 erdsze2lem2 33175 poimirlem9 35795 poimirlem25 35811 poimirlem26 35812 poimirlem27 35813 poimirlem28 35814 eldioph2lem1 40589 frlmpwfi 40930 isnumbasgrplem3 40937 idomsubgmo 41030 |
Copyright terms: Public domain | W3C validator |