![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashen | Structured version Visualization version GIF version |
Description: Two finite sets have the same number of elements iff they are equinumerous. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
hashen | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ 𝐴 ≈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6906 | . . . 4 ⊢ ((♯‘𝐴) = (♯‘𝐵) → (◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(♯‘𝐴)) = (◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(♯‘𝐵))) | |
2 | eqid 2734 | . . . . . 6 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) | |
3 | 2 | hashginv 14369 | . . . . 5 ⊢ (𝐴 ∈ Fin → (◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(♯‘𝐴)) = (card‘𝐴)) |
4 | 2 | hashginv 14369 | . . . . 5 ⊢ (𝐵 ∈ Fin → (◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(♯‘𝐵)) = (card‘𝐵)) |
5 | 3, 4 | eqeqan12d 2748 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(♯‘𝐴)) = (◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(♯‘𝐵)) ↔ (card‘𝐴) = (card‘𝐵))) |
6 | 1, 5 | imbitrid 244 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) → (card‘𝐴) = (card‘𝐵))) |
7 | fveq2 6906 | . . . 4 ⊢ ((card‘𝐴) = (card‘𝐵) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵))) | |
8 | 2 | hashgval 14368 | . . . . 5 ⊢ (𝐴 ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) = (♯‘𝐴)) |
9 | 2 | hashgval 14368 | . . . . 5 ⊢ (𝐵 ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) = (♯‘𝐵)) |
10 | 8, 9 | eqeqan12d 2748 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) ↔ (♯‘𝐴) = (♯‘𝐵))) |
11 | 7, 10 | imbitrid 244 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) = (card‘𝐵) → (♯‘𝐴) = (♯‘𝐵))) |
12 | 6, 11 | impbid 212 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ (card‘𝐴) = (card‘𝐵))) |
13 | finnum 9985 | . . 3 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom card) | |
14 | finnum 9985 | . . 3 ⊢ (𝐵 ∈ Fin → 𝐵 ∈ dom card) | |
15 | carden2 10024 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) = (card‘𝐵) ↔ 𝐴 ≈ 𝐵)) | |
16 | 13, 14, 15 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) = (card‘𝐵) ↔ 𝐴 ≈ 𝐵)) |
17 | 12, 16 | bitrd 279 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ 𝐴 ≈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 Vcvv 3477 class class class wbr 5147 ↦ cmpt 5230 ◡ccnv 5687 dom cdm 5688 ↾ cres 5690 ‘cfv 6562 (class class class)co 7430 ωcom 7886 reccrdg 8447 ≈ cen 8980 Fincfn 8983 cardccrd 9972 0cc0 11152 1c1 11153 + caddc 11155 ♯chash 14365 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-n0 12524 df-z 12611 df-uz 12876 df-hash 14366 |
This theorem is referenced by: hasheni 14383 hasheqf1o 14384 isfinite4 14397 hasheq0 14398 hashsng 14404 hashen1 14405 hashsdom 14416 hash1snb 14454 hashxplem 14468 hashmap 14470 hashpw 14471 hashbclem 14487 phphashd 14501 hash2pr 14504 pr2pwpr 14514 hash3tr 14526 tpf1o 14536 s7f1o 15001 isercolllem2 15698 isercoll 15700 summolem3 15746 mertenslem1 15916 prodmolem3 15965 bpolylem 16080 hashdvds 16808 crth 16811 phimullem 16812 eulerth 16816 4sqlem11 16988 lagsubg2 19224 dfod2 19596 sylow1lem2 19631 sylow2alem2 19650 slwhash 19656 sylow2 19658 sylow3lem1 19659 cyggenod 19916 lt6abl 19927 ablfac1c 20105 ablfac1eu 20107 ablfaclem3 20121 fta1blem 26224 vieta1 26368 isppw 27171 clwlknon2num 30396 numclwlk1lem2 30398 fisshasheq 35098 derangen2 35158 erdsze2lem1 35187 erdsze2lem2 35188 poimirlem9 37615 poimirlem25 37631 poimirlem26 37632 poimirlem27 37633 poimirlem28 37634 eldioph2lem1 42747 frlmpwfi 43086 isnumbasgrplem3 43093 idomsubgmo 43181 gpg5grlic 47974 |
Copyright terms: Public domain | W3C validator |