![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashen | Structured version Visualization version GIF version |
Description: Two finite sets have the same number of elements iff they are equinumerous. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
hashen | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ 𝐴 ≈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . . . 4 ⊢ ((♯‘𝐴) = (♯‘𝐵) → (◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(♯‘𝐴)) = (◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(♯‘𝐵))) | |
2 | eqid 2740 | . . . . . 6 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) | |
3 | 2 | hashginv 14383 | . . . . 5 ⊢ (𝐴 ∈ Fin → (◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(♯‘𝐴)) = (card‘𝐴)) |
4 | 2 | hashginv 14383 | . . . . 5 ⊢ (𝐵 ∈ Fin → (◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(♯‘𝐵)) = (card‘𝐵)) |
5 | 3, 4 | eqeqan12d 2754 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(♯‘𝐴)) = (◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(♯‘𝐵)) ↔ (card‘𝐴) = (card‘𝐵))) |
6 | 1, 5 | imbitrid 244 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) → (card‘𝐴) = (card‘𝐵))) |
7 | fveq2 6920 | . . . 4 ⊢ ((card‘𝐴) = (card‘𝐵) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵))) | |
8 | 2 | hashgval 14382 | . . . . 5 ⊢ (𝐴 ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) = (♯‘𝐴)) |
9 | 2 | hashgval 14382 | . . . . 5 ⊢ (𝐵 ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) = (♯‘𝐵)) |
10 | 8, 9 | eqeqan12d 2754 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) ↔ (♯‘𝐴) = (♯‘𝐵))) |
11 | 7, 10 | imbitrid 244 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) = (card‘𝐵) → (♯‘𝐴) = (♯‘𝐵))) |
12 | 6, 11 | impbid 212 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ (card‘𝐴) = (card‘𝐵))) |
13 | finnum 10017 | . . 3 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom card) | |
14 | finnum 10017 | . . 3 ⊢ (𝐵 ∈ Fin → 𝐵 ∈ dom card) | |
15 | carden2 10056 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) = (card‘𝐵) ↔ 𝐴 ≈ 𝐵)) | |
16 | 13, 14, 15 | syl2an 595 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) = (card‘𝐵) ↔ 𝐴 ≈ 𝐵)) |
17 | 12, 16 | bitrd 279 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ 𝐴 ≈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 ↦ cmpt 5249 ◡ccnv 5699 dom cdm 5700 ↾ cres 5702 ‘cfv 6573 (class class class)co 7448 ωcom 7903 reccrdg 8465 ≈ cen 9000 Fincfn 9003 cardccrd 10004 0cc0 11184 1c1 11185 + caddc 11187 ♯chash 14379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-hash 14380 |
This theorem is referenced by: hasheni 14397 hasheqf1o 14398 isfinite4 14411 hasheq0 14412 hashsng 14418 hashen1 14419 hashsdom 14430 hash1snb 14468 hashxplem 14482 hashmap 14484 hashpw 14485 hashbclem 14501 phphashd 14515 hash2pr 14518 pr2pwpr 14528 hash3tr 14540 tpf1o 14550 s7f1o 15015 isercolllem2 15714 isercoll 15716 summolem3 15762 mertenslem1 15932 prodmolem3 15981 bpolylem 16096 hashdvds 16822 crth 16825 phimullem 16826 eulerth 16830 4sqlem11 17002 lagsubg2 19234 dfod2 19606 sylow1lem2 19641 sylow2alem2 19660 slwhash 19666 sylow2 19668 sylow3lem1 19669 cyggenod 19926 lt6abl 19937 ablfac1c 20115 ablfac1eu 20117 ablfaclem3 20131 fta1blem 26230 vieta1 26372 isppw 27175 clwlknon2num 30400 numclwlk1lem2 30402 fisshasheq 35082 derangen2 35142 erdsze2lem1 35171 erdsze2lem2 35172 poimirlem9 37589 poimirlem25 37605 poimirlem26 37606 poimirlem27 37607 poimirlem28 37608 eldioph2lem1 42716 frlmpwfi 43055 isnumbasgrplem3 43062 idomsubgmo 43154 |
Copyright terms: Public domain | W3C validator |