Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hashen | Structured version Visualization version GIF version |
Description: Two finite sets have the same number of elements iff they are equinumerous. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
hashen | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ 𝐴 ≈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6756 | . . . 4 ⊢ ((♯‘𝐴) = (♯‘𝐵) → (◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(♯‘𝐴)) = (◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(♯‘𝐵))) | |
2 | eqid 2738 | . . . . . 6 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) | |
3 | 2 | hashginv 13976 | . . . . 5 ⊢ (𝐴 ∈ Fin → (◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(♯‘𝐴)) = (card‘𝐴)) |
4 | 2 | hashginv 13976 | . . . . 5 ⊢ (𝐵 ∈ Fin → (◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(♯‘𝐵)) = (card‘𝐵)) |
5 | 3, 4 | eqeqan12d 2752 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(♯‘𝐴)) = (◡(rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(♯‘𝐵)) ↔ (card‘𝐴) = (card‘𝐵))) |
6 | 1, 5 | syl5ib 243 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) → (card‘𝐴) = (card‘𝐵))) |
7 | fveq2 6756 | . . . 4 ⊢ ((card‘𝐴) = (card‘𝐵) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵))) | |
8 | 2 | hashgval 13975 | . . . . 5 ⊢ (𝐴 ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) = (♯‘𝐴)) |
9 | 2 | hashgval 13975 | . . . . 5 ⊢ (𝐵 ∈ Fin → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) = (♯‘𝐵)) |
10 | 8, 9 | eqeqan12d 2752 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐴)) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)‘(card‘𝐵)) ↔ (♯‘𝐴) = (♯‘𝐵))) |
11 | 7, 10 | syl5ib 243 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) = (card‘𝐵) → (♯‘𝐴) = (♯‘𝐵))) |
12 | 6, 11 | impbid 211 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ (card‘𝐴) = (card‘𝐵))) |
13 | finnum 9637 | . . 3 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom card) | |
14 | finnum 9637 | . . 3 ⊢ (𝐵 ∈ Fin → 𝐵 ∈ dom card) | |
15 | carden2 9676 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) = (card‘𝐵) ↔ 𝐴 ≈ 𝐵)) | |
16 | 13, 14, 15 | syl2an 595 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((card‘𝐴) = (card‘𝐵) ↔ 𝐴 ≈ 𝐵)) |
17 | 12, 16 | bitrd 278 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ 𝐴 ≈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 ↦ cmpt 5153 ◡ccnv 5579 dom cdm 5580 ↾ cres 5582 ‘cfv 6418 (class class class)co 7255 ωcom 7687 reccrdg 8211 ≈ cen 8688 Fincfn 8691 cardccrd 9624 0cc0 10802 1c1 10803 + caddc 10805 ♯chash 13972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-hash 13973 |
This theorem is referenced by: hasheni 13990 hasheqf1o 13991 isfinite4 14005 hasheq0 14006 hashsng 14012 hashen1 14013 hashsdom 14024 hash1snb 14062 hashxplem 14076 hashmap 14078 hashpw 14079 hashbclem 14092 phphashd 14108 hash2pr 14111 pr2pwpr 14121 hash3tr 14132 isercolllem2 15305 isercoll 15307 summolem3 15354 mertenslem1 15524 prodmolem3 15571 bpolylem 15686 hashdvds 16404 crth 16407 phimullem 16408 eulerth 16412 4sqlem11 16584 lagsubg2 18732 dfod2 19086 sylow1lem2 19119 sylow2alem2 19138 slwhash 19144 sylow2 19146 sylow3lem1 19147 cyggenod 19399 lt6abl 19411 ablfac1c 19589 ablfac1eu 19591 ablfaclem3 19605 fta1blem 25238 vieta1 25377 isppw 26168 clwlknon2num 28633 numclwlk1lem2 28635 fisshasheq 32973 derangen2 33036 erdsze2lem1 33065 erdsze2lem2 33066 poimirlem9 35713 poimirlem25 35729 poimirlem26 35730 poimirlem27 35731 poimirlem28 35732 eldioph2lem1 40498 frlmpwfi 40839 isnumbasgrplem3 40846 idomsubgmo 40939 |
Copyright terms: Public domain | W3C validator |